1
|
Zhang C, Han L, Liu Q, Liu M, Gu B, Shen Y. A colorimetric and far-red fluorescent probe for rapid detection of bisulfite/sulfite in full water-soluble based on biquinolinium and its applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119561. [PMID: 33618262 DOI: 10.1016/j.saa.2021.119561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Bisulfite (HSO3-) and sulfite (SO32-) are involved in numerous physiological processes of living systems. However, high levels of these substances are often correlated to many diseases. Herein, we designed and synthesized a simple full water-soluble colorimetric and far-red fluorescent probe (E)-1-methyl-4-(2-(1-methylquinolin-1-ium-3-yl)vinyl)quinolin-1-ium iodide trifluoromethanesulfonate (DQ) for HSO3-/SO32- detection by coupling 1,4-dimethylquinolinium with 3-quinolinium carboxaldehyde for the first time. The probe DQ showed high selectivity for HSO3- detection via a 1,4-nucleophilic addition reaction with distinct color changes from colorless to purple-red and remarkable far-red fluorescence enhancement in pure aqueous solutions. Specifically, the probe displayed a fast response (<15 s) for bisulfite, which renders it suitable for real time detection of HSO3-. Under the optimized conditions, the far-red fluorescence intensity was linear to the concentrations of HSO3- in the range from 0 to 25 μM and the detection limit was as low as 0.11 μM. Additionally, the probe could be applied to sense HSO3- on paper strips, real sample including vermicelli and sugar and image HSO3- in living cells, which indicated that probe DQ has potential application in food samples and living systems.
Collapse
Affiliation(s)
- Chunxiang Zhang
- Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Lujiao Han
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Qingheng Liu
- Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Mengqin Liu
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Biao Gu
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China.
| | - Youming Shen
- Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| |
Collapse
|
2
|
Utreja D, Sharma S, Goyal A, Kaur K, Kaushal S. Synthesis and Biological Activity of Quaternary Quinolinium Salts: A Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191023122704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heterocyclic chemistry is the only branch of chemistry that has applications in
varied areas such as dyes, photosensitizers, coordination compounds, polymeric materials,
biological, and many other fields. Quinoline and its derivatives have always engrossed
both synthetic chemists and biologists because of their diverse chemical and pharmacological
properties as these ring systems can be easily found in various natural products, especially
in alkaloids. Among alkaloids, quinoline derivatives i.e. quinolinium salts have
attracted much attention nowadays owing to their diverse biological profile such as antimicrobial,
antitumor, antifungal, hypotensive, anti-HIV, analgesics and anti-inflammatory,
etc. Quinoline and its analogs have recently been examined for their modes of function in
the inhibition of tyrosine kinases, proteasome, tubulin polymerization, topoisomerase, and
DNA repair. These observations have been guiding scientists for the expansion of new quinoline derivatives
with improved and varied biological activities. Quinolinium salts have immense possibilities and scope to investigate
these compounds as potential drug candidates. Therefore, we shall present a concise compilation of
this work to aid in present knowledge and to help researchers explore an interesting quinoline class having medicinal
potential.
Collapse
Affiliation(s)
- Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Shivali Sharma
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Akhil Goyal
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Komalpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Sonia Kaushal
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| |
Collapse
|
3
|
Bao M, Lu W, Su H, Qiu L, Xu X. A convergent formal [4 + 2] cycloaddition of 1,6-diynes and benzyl azides: construction of spiro-polyheterocycles. Org Biomol Chem 2019; 16:3258-3265. [PMID: 29664098 DOI: 10.1039/c8ob00735g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A convergent formal [4 + 2] cycloaddition reaction for the construction of structurally appealing spiro-tetrahydroquinolines has been developed, in which, a one-pot reaction is established for the in situ generation of two reagents, a cyclic alkyne and an N-aryliminium ion, from the corresponding precursors in the presence of an Au-catalyst and Brønsted acid, respectively.
Collapse
Affiliation(s)
- Ming Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | |
Collapse
|
4
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1450] [Impact Index Per Article: 241.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
5
|
Chemo-selective couplings of anilines and acroleins/enones under substrate control and condition control. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63134-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Jayakumar J, Cheng CH. Recent Advances in the Synthesis of Quaternary Ammonium Salts via Transition-Metal-Catalyzed CH Bond Activation. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Chien-Hong Cheng
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan, ROC
| |
Collapse
|
7
|
Upadhyay NS, Jayakumar J, Cheng CH. Facile one-pot synthesis of 2,3-dihydro-1H-indolizinium derivatives by rhodium(iii)-catalyzed intramolecular oxidative annulation via C–H activation: application to ficuseptine synthesis. Chem Commun (Camb) 2017; 53:2491-2494. [DOI: 10.1039/c7cc00008a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Various substituted indolizidinium, quinolizinium and pyrido[1,2-a]azepinium salts were synthesized from benzaldehydes (α,β-unsaturated aldehydes) and alkyne–amines via Rh-catalyzed C–H activation.
Collapse
Affiliation(s)
| | | | - Chien-Hong Cheng
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| |
Collapse
|