1
|
Faeze Mortazavi S, Ebadi A, Navid Mohammadian M, Mojaddami A, Toolabi M. Synthesis of Novel 3,4-Dihydropyrimidine Derivatives, Cytotoxic Activity Evaluation, Apoptosis, Molecular Docking Studies, and MD Simulations. Chem Biodivers 2025; 22:e202402170. [PMID: 39327810 DOI: 10.1002/cbdv.202402170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
In this study, twelve 3,4-dihydropyrimidines derivatives were synthesized through Biginelli multi-component reaction. The efficacy of these compounds against MCF-7, A549, and HeLa cells was evaluated using the MTT method. The results showed that designed derivatives were more effective against A549 cancer cells than MCF-7 and HeLa cells. Compound 5l (bearing 4-Cl-phenyl at C4 of 3, 4-dihydropyrimidin-2(1H)-one ring) was the most potent analogue (A549: 18.65±1.87 μM, HeLa: 26.59±2.71 μM, MCF-7: 31.82±2.64 μM). The presence of an electron-withdrawing group with optimum lipophilicity at the C4 position of the phenyl ring increased the cytotoxic effect. The flow cytometry findings indicated that compound 5l induced apoptosis in A549 cancer cells in a dose-dependent manner. Eg5 and AKT1 were selected as molecular modeling target by applying pharmacology network analyses. The molecular docking results indicated that both enantiomers of compound 5l had significant interactions with key residues in both Eg5 (Gly117 and Glu116) and AKT1 (Ala123 and Glu121) active sites. However, MD simulation revealed that the R enantiomer had a more stable complex and a higher binding affinity to the Eg5 enzyme active site than the S-enantiomer. The affinity of 5l (R enantiomer) to Eg5 was predicted more than AKT1.
Collapse
Affiliation(s)
- Seyyede Faeze Mortazavi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ebadi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Navid Mohammadian
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ayyub Mojaddami
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahsa Toolabi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Janković N, Ristovski J, Žižak Ž, Radan M, Cvijić S, Nikolić K, Ignjatović NL. Designing and the anticancer activity of chitosan and chitosan oligosaccharide lactate nanobeads loaded with Biginelli hybrid. RSC Adv 2024; 14:31526-31534. [PMID: 39372042 PMCID: PMC11450446 DOI: 10.1039/d4ra05783j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
This study focuses on the designing and characterization, and anticancer evaluation of chitosan-based nanoparticles (NPs) loaded (enriched) with a Biginelli hybrid compound (BH). NPs based on chitosan (CH) or chitosan oligosaccharide lactate (CHOL), are carefully designed to encapsulate a tetrahydropyrimidine derivative (BH) with already proven anticancer properties. The formulations were evaluated for their physicochemical properties, including particle size distribution and morphology, using techniques such as infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The cytotoxicity profiles were assessed on different cancer cell lines, showing a higher selectivity towards HeLa and A549 cells related to BH. BH-CH showed better cytotoxic profile related to BH-CHOL NPs. A cell cycle analysis revealed an accumulation of cells in the G2/M phase after a treatment with these NPs, indicating the ability to induce mitotic arrest in cancer cells. In summary, the results underscore the promising application of CH-based natural nanocarriers for the targeted delivery of Biginelli hybrids, showcasing a significant potential for further in vivo testing.
Collapse
Affiliation(s)
- Nenad Janković
- University of Kragujevac, Department of Science, Institute for Information Technologies Kragujevac Jovana Cvijića bb Kragujevac 34000 Serbia
| | - Jovana Ristovski
- University of Novi Sad, Faculty of Medicine Hajduk Veljkova 3 Novi Sad 21000 Serbia
| | - Željko Žižak
- Institute of Oncology and Radiology of Serbia Pasterova 14 Belgrade 11000 Serbia
| | - Milica Radan
- The Institute for the Study of Medicinal Herbs "Dr Josif Pančić" Tadeuša Košćuška 1 Belgrade 11000 Serbia
| | - Sandra Cvijić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology Vojvode Stepe 450 Belgrade 11221 Serbia
| | - Katarina Nikolić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Chemistry Vojvode Stepe 450 Belgrade 11221 Serbia
| | - Nenad L Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts Knez Mihailova 35/IV, P.O. Box 377 Belgrade Serbia
| |
Collapse
|
3
|
Beck PS, Leitão AG, Santana YB, Correa JR, Rodrigues CVS, Machado DFS, Matos GDR, Ramos LM, Gatto CC, Oliveira SCC, Andrade CKZ, Neto BAD. Revisiting Biginelli-like reactions: solvent effects, mechanisms, biological applications and correction of several literature reports. Org Biomol Chem 2024; 22:3630-3651. [PMID: 38652003 DOI: 10.1039/d4ob00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This study critically reevaluates reported Biginelli-like reactions using a Kamlet-Abboud-Taft-based solvent effect model. Surprisingly, structural misassignments were discovered in certain multicomponent reactions, leading to the identification of pseudo three-component derivatives instead of the expected MCR adducts. Attempts to replicate literature conditions failed, prompting reconsideration of the described MCRs and proposed mechanisms. Electrospray ionization (tandem) mass spectrometry, NMR, melting points, elemental analyses and single-crystal X-ray analysis exposed inaccuracies in reported MCRs and allowed for the proposition of a complete catalytic cycle. Biological investigations using both pure and "contaminated" derivatives revealed distinctive features in assessed bioassays. A new cellular action mechanism was unveiled for a one obtained pseudo three-component adduct, suggesting similarity with the known dihydropyrimidinone Monastrol as Eg5 inhibitors, disrupting mitosis by forming monoastral mitotic spindles. Docking studies and RMSD analyses supported this hypothesis. The findings described herein underscore the necessity for a critical reexamination and potential corrections of structural assignments in several reports. This work emphasizes the significance of rigorous characterization and critical evaluation in synthetic chemistry, urging a careful reassessment of reported synthesis and biological activities associated with these compounds.
Collapse
Affiliation(s)
- Pedro S Beck
- University of Brasilia, Institute of Chemistry, Laboratory of Medicinal and Technological Chemistry. Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Arthur G Leitão
- University of Brasilia, Institute of Chemistry, Laboratory of Medicinal and Technological Chemistry. Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Yasmin B Santana
- University of Brasilia, Institute of Chemistry, Laboratory of Medicinal and Technological Chemistry. Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - José R Correa
- University of Brasilia, Institute of Chemistry, Laboratory of Medicinal and Technological Chemistry. Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Carime V S Rodrigues
- University of Brasilia, Institute of Chemistry, Laboratory of Medicinal and Technological Chemistry. Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Daniel F S Machado
- University of Brasilia, Institute of Chemistry, Laboratory of Medicinal and Technological Chemistry. Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Guilherme D R Matos
- University of Brasilia, Institute of Chemistry, Laboratory of Medicinal and Technological Chemistry. Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Luciana M Ramos
- Universidade Estadual de Goiás (UEG), Anápolis, Goiás, 75001-970, Brazil
| | - Claudia C Gatto
- University of Brasilia, Institute of Chemistry, Laboratory of Medicinal and Technological Chemistry. Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Sarah C C Oliveira
- University of Brasilia, Institute of Biology, Laboratory of Allelopathy, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Carlos K Z Andrade
- University of Brasilia, Institute of Chemistry, Laboratory of Medicinal and Technological Chemistry. Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| | - Brenno A D Neto
- University of Brasilia, Institute of Chemistry, Laboratory of Medicinal and Technological Chemistry. Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
4
|
Gonçalves Â, Matias M, Salvador JAR, Silvestre S. Bioactive Bismuth Compounds: Is Their Toxicity a Barrier to Therapeutic Use? Int J Mol Sci 2024; 25:1600. [PMID: 38338879 PMCID: PMC10855265 DOI: 10.3390/ijms25031600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Bismuth compounds are considered relatively non-toxic, with their low solubility in aqueous solutions (e.g., biological fluids) being the major contributing factor to this property. Bismuth derivatives are widely used for the treatment of peptic ulcers, functional dyspepsia, and chronic gastritis. Moreover, the properties of bismuth compounds have also been extensively explored in two main fields of action: antimicrobial and anticancer. Despite the clinical interest of bismuth-based drugs, several side effects have also been reported. In fact, excessive acute ingestion of bismuth, or abuse for an extended period of time, can lead to toxicity. However, evidence has demonstrated that the discontinuation of these compounds usually reverses their toxic effects. Notwithstanding, the continuously growing use of bismuth products suggests that it is indeed part of our environment and our daily lives, which urges a more in-depth review and investigation into its possible undesired activities. Therefore, this review aims to update the pharmaco-toxicological properties of bismuth compounds. A special focus will be given to in vitro, in vivo, and clinical studies exploring their toxicity.
Collapse
Affiliation(s)
- Ângela Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (Â.G.); (M.M.)
| | - Mariana Matias
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (Â.G.); (M.M.)
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC—Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Samuel Silvestre
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (Â.G.); (M.M.)
- CNC—Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
5
|
Iniyaval S, Saravanan V, Mai CW, Ramalingan C. Tetrazolopyrimidine-tethered phenothiazine molecular hybrids: synthesis, biological and molecular docking studies. NEW J CHEM 2024; 48:13384-13396. [DOI: 10.1039/d3nj05817d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025]
Abstract
Molecular hybrids integrating phenothiazine and tetrazolopyrimidine structural motifs were designed, synthesized through a one-pot multi-component reaction and, evaluated for their radical scavenging, cytotoxicity and molecular docking studies.
Collapse
Affiliation(s)
- Shunmugam Iniyaval
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil nadu, India
| | - Vadivel Saravanan
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil nadu, India
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Chennan Ramalingan
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil nadu, India
| |
Collapse
|
6
|
Bhardwaj G, Kaur R, Kaur N, Singh N. Gold nanoparticles capped DHPMs for meliorate detection of antiretroviral drug: Azidothymidine. Talanta 2022; 249:123591. [DOI: 10.1016/j.talanta.2022.123591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/10/2021] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
|
7
|
Rostami N, Dekamin MG, Valiey E, FaniMoghadam H. l-Asparagine-EDTA-amide silica-coated MNPs: a highly efficient and nano-ordered multifunctional core-shell organocatalyst for green synthesis of 3,4-dihydropyrimidin-2(1 H)-one compounds. RSC Adv 2022; 12:21742-21759. [PMID: 36091190 PMCID: PMC9386691 DOI: 10.1039/d2ra02935a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/03/2022] [Indexed: 02/02/2023] Open
Abstract
In this study, new l-asparagine grafted on 3-aminopropyl-modified Fe3O4@SiO2 core-shell magnetic nanoparticles using the EDTA linker (Fe3O4@SiO2-APTS-EDTA-asparagine) was prepared and its structures properly confirmed using different spectroscopic, microscopic and magnetic methods or techniques including FT-IR, EDX, XRD, FESEM, TEM, TGA and VSM. The Fe3O4@SiO2-APTS-EDTA-asparagine core-shell nanomaterial was found, as a highly efficient multifunctional and recoverable organocatalyst, to promote the efficient synthesis of a wide range of biologically-active 3,4-dihydropyrimidin-2(1H)-one derivatives under solvent-free conditions. It was proved that Fe3O4@SiO2-APTS-EDTA-asparagine MNPs, as a catalyst having excellent thermal and magnetic stability, specific morphology and acidic sites with appropriate geometry, can activate the Biginelli reaction components. Moreover, the environmental-friendliness and nontoxic nature of the catalyst, cost effectiveness, low catalyst loading, easy separation of the catalyst from the reaction mixture and short reaction time are some of the remarkable advantages of this green protocol.
Collapse
Affiliation(s)
- Negin Rostami
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Mohammad G Dekamin
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Ehsan Valiey
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Hamidreza FaniMoghadam
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| |
Collapse
|
8
|
Sánchez-Sancho F, Escolano M, Gaviña D, Csáky AG, Sánchez-Roselló M, Díaz-Oltra S, del Pozo C. Synthesis of 3,4-Dihydropyrimidin(thio)one Containing Scaffold: Biginelli-like Reactions. Pharmaceuticals (Basel) 2022; 15:ph15080948. [PMID: 36015096 PMCID: PMC9413519 DOI: 10.3390/ph15080948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
The interest in 3,4-dihydropyrimidine-2(1H)-(thio)ones is increasing every day, mainly due to their paramount biological relevance. The Biginelli reaction is the classical approach to reaching these scaffolds, although the product diversity suffers from some limitations. In order to overcome these restrictions, two main approaches have been devised. The first one involves the modification of the conventional components of the Biginelli reaction and the second one refers to the postmodification of the Biginelli products. Both strategies have been extensively revised in this manuscript. Regarding the first one, initially, the modification of one of the components was covered. Although examples of modifications of the three of them were described, by far the modification of the keto ester counterpart was the most popular approach, and a wide variety of different enolizable carbonylic compounds were used; moreover, changes in two or the three components were also described, broadening the substitution of the final dihydropyrimidines. Together with these modifications, the use of Biginelli adducts as a starting point for further modification was also a very useful strategy to decorate the final heterocyclic structure.
Collapse
Affiliation(s)
| | - Marcos Escolano
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
| | - Daniel Gaviña
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
| | - Aurelio G. Csáky
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, Paseo de Juan XXIII, 1, 28040 Madrid, Spain;
| | - María Sánchez-Roselló
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
| | - Santiago Díaz-Oltra
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
- Correspondence: (S.D.-O.); (C.d.P.)
| | - Carlos del Pozo
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
- Correspondence: (S.D.-O.); (C.d.P.)
| |
Collapse
|
9
|
Synthesis of new nicotinic acid hydrazide metal complexes: Potential anti-cancer drug, supramolecular architecture, antibacterial studies and catalytic properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
do Nascimento LG, Dias IM, de Souza GBM, Mourão LC, Pereira MB, Viana JCV, Lião LM, de Oliveira GR, Alonso CG. Sulfonated carbons from agro-industrial residues: simple and efficient catalysts for the Biginelli reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj04686a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An eco-friendly catalyst prepared from rice husk was used to synthesize dihydropyrimidinones (DHPMs) and achieved a yield of 92%.
Collapse
Affiliation(s)
| | - Isabela Milhomem Dias
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, Goiás, Brazil
| | - Guilherme Botelho Meireles de Souza
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, Goiás, Brazil
- Chemical Engineering Department, State University of Maringá, CEP 87020-900 Maringá, Paraná, Brazil
| | | | - Mariana Bisinotto Pereira
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, Goiás, Brazil
- Chemical Engineering Department, State University of Maringá, CEP 87020-900 Maringá, Paraná, Brazil
| | - Júlio Cezár Vieira Viana
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, Goiás, Brazil
- Federal University of Tocantins, CEP 77404-970, Gurupi, Tocantins, Brazil
| | - Luciano Morais Lião
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, Goiás, Brazil
| | | | | |
Collapse
|
11
|
Al-Zaydi KM, Al-Boqami M, Elnagdi NMH. Green Synthesis of Dihydropyrimidines and Pyridines Utilizing Biginelli Reaction. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Khadijah M. Al-Zaydi
- Chemistry Department, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Sciences-AL Faisaliah, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Modi Al-Boqami
- Chemistry Department, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Sciences-AL Faisaliah, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noha M. H. Elnagdi
- Faculty of Pharmacy, Organic Chemistry Department, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
12
|
Bis-thiobarbiturates as Promising Xanthine Oxidase Inhibitors: Synthesis and Biological Evaluation. Biomedicines 2021; 9:biomedicines9101443. [PMID: 34680559 PMCID: PMC8533253 DOI: 10.3390/biomedicines9101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Xanthine oxidase (XO) is the enzyme responsible for the conversion of endogenous purines into uric acid. Therefore, this enzyme has been associated with pathological conditions caused by hyperuricemia, such as the disease commonly known as gout. Barbiturates and their congeners thiobarbiturates represent a class of heterocyclic drugs capable of influencing neurotransmission. However, in recent years a very large group of potential pharmaceutical and medicinal applications have been related to their structure. This great diversity of biological activities is directly linked to the enormous opportunities found for chemical change off the back of these findings. With this in mind, sixteen bis-thiobarbiturates were synthesized in moderate to excellent reactional yields, and their antioxidant, anti-proliferative, and XO inhibitory activity were evaluated. In general, all bis-thiobarbiturates present a good antioxidant performance and an excellent ability to inhibit XO at a concentration of 30 µM, eight of them are superior to those observed with the reference drug allopurinol (Allo), nevertheless they were not as effective as febuxostat. The most powerful bis-thiobarbiturate within this set showed in vitro IC50 of 1.79 μM, which was about ten-fold better than Allo inhibition, together with suitable low cytotoxicity. In silico molecular properties such as drug-likeness, pharmacokinetics, and toxicity of this promising barbiturate were also analyzed and herein discussed.
Collapse
|
13
|
Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1 H)-ones via a Three-Component Biginelli Reaction. Molecules 2021; 26:molecules26123753. [PMID: 34202951 PMCID: PMC8235482 DOI: 10.3390/molecules26123753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
Multicomponent reactions are considered to be of increasing importance as time progresses due to the economic and environmental advantages such strategies entail. The three-component Biginelli reaction involves the combination of an aldehyde, a β-ketoester and urea to produce 3,4-dihydropyrimidin-2(1H)-ones, also known as DHPMs. The synthesis of these products is highly important due to their myriad of medicinal properties, amongst them acting as calcium channel blockers and antihypertensive and anti-inflammatory agents. In this study, silicotungstic acid supported on Ambelyst-15 was used as a heterogeneous catalyst for the Biginelli reaction under solventless conditions. Electron-poor aromatic aldehydes gave the best results. Sterically hindered β-ketoesters resulted in lower reaction yields. The reaction was carried out under heterogeneous catalysis to allow easy recovery of the product from the reaction mixture and recycling of the catalyst. The heterogeneity of the reaction was confirmed by carrying out a hot filtration test.
Collapse
|
14
|
Insuasty D, Castillo J, Becerra D, Rojas H, Abonia R. Synthesis of Biologically Active Molecules through Multicomponent Reactions. Molecules 2020; 25:E505. [PMID: 31991635 PMCID: PMC7038231 DOI: 10.3390/molecules25030505] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/02/2023] Open
Abstract
Focusing on the literature progress since 2002, the present review explores the highly significant role that multicomponent reactions (MCRs) have played as a very important tool for expedite synthesis of a vast number of organic molecules, but also, highlights the fact that many of such molecules are biologically active or at least have been submitted to any biological screen. The selected papers covered in this review must meet two mandatory requirements: (1) the reported products should be obtained via a multicomponent reaction; (2) the reported products should be biologically actives or at least tested for any biological property. Given the diversity of synthetic approaches utilized in MCRs, the highly diverse nature of the biological activities evaluated for the synthesized compounds, and considering their huge structural variability, much of the reported data are organized into concise schemes and tables to facilitate comparison, and to underscore the key points of this review.
Collapse
Affiliation(s)
- Daniel Insuasty
- Grupo de Investigación en Química y Biología, Departamento de Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia 1569, Barranquilla Atlántico 081007, Colombia;
| | - Juan Castillo
- Grupo de Catálisis, Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia UPTC, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (J.C.); (D.B.); (H.R.)
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Diana Becerra
- Grupo de Catálisis, Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia UPTC, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (J.C.); (D.B.); (H.R.)
| | - Hugo Rojas
- Grupo de Catálisis, Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia UPTC, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (J.C.); (D.B.); (H.R.)
| | - Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, Cali A. A. 25360, Colombia
| |
Collapse
|
15
|
Sivaramakarthikeyan R, Karuppasamy A, Iniyaval S, Padmavathy K, Lim WM, Mai CW, Ramalingan C. Phenothiazine and amide-ornamented novel nitrogen heterocyclic hybrids: synthesis, biological and molecular docking studies. NEW J CHEM 2020. [DOI: 10.1039/c9nj05489h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synthesis of phenothiazine and amide-ornamented nitrogen heterocycles (25–34) has been accomplished utilizing a multi-step synthetic protocol and the structures have been established based on physical and spectral techniques.
Collapse
Affiliation(s)
- Ramar Sivaramakarthikeyan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Ayyanar Karuppasamy
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Shunmugam Iniyaval
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Krishnaraj Padmavathy
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Wei-Meng Lim
- School of Pharmacy
- International Medical University
- Malaysia
| | - Chun-Wai Mai
- School of Pharmacy
- International Medical University
- Malaysia
- Center for Cancer and Stem Cell Research
- Institute for Research
| | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| |
Collapse
|
16
|
Synthesis, Characterization, and Anticancer Activities Evaluation of Compounds Derived from 3,4-Dihydropyrimidin-2(1 H)-one. Molecules 2019; 24:molecules24050891. [PMID: 30832453 PMCID: PMC6429579 DOI: 10.3390/molecules24050891] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/04/2023] Open
Abstract
3,4-dihydropyrimidin-2(1H)-one compounds (DHPMs) possess extensive biological activities and are mainly prepared via Biginelli reaction and N-alkylation. In the present study, selective alkylation of N¹ was investigated by using tetrabutylammonium hydroxide. In vitro cytotoxicity study on all synthesized compounds demonstrated that introduction of the aryl chain in the R³ as well as the low electron-donating group in the R¹ of DHPMs contributed to the anti-proliferative potency. A larger value of the partition coefficient (Log P) and suitable polar surface area (PSA) values were both found to be important in order to maintain the antitumor activity. The results from in vivo study indicated the great potential of compound 3d to serve as a lead compound for novel anti-tumor drugs to treat glioma. Pharmacophore study regarding the structure-activity relations of DHPMs were also conducted. Our results here could provide a guide for the design of novel bioactive 3,4-dihydropyrimidin-2(1H)-one compounds.
Collapse
|
17
|
Kong R, Han SB, Wei JY, Peng XC, Xie ZB, Gong SS, Sun Q. Highly Efficient Synthesis of Substituted 3,4-Dihydropyrimidin-2-(1 H)-ones (DHPMs) Catalyzed by Hf(OTf)₄: Mechanistic Insights into Reaction Pathways under Metal Lewis Acid Catalysis and Solvent-Free Conditions. Molecules 2019; 24:E364. [PMID: 30669606 PMCID: PMC6359175 DOI: 10.3390/molecules24020364] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/02/2022] Open
Abstract
In our studies on the catalytic activity of Group IVB transition metal Lewis acids, Hf(OTf)₄ was identified as a highly potent catalyst for "one-pot, three-component" Biginelli reaction. More importantly, it was found that solvent-free conditions, in contrast to solvent-based conditions, could dramatically promote the Hf(OTf)₄-catalyzed formation of 3,4-dihydro-pyrimidin-2-(1H)-ones. To provide a mechanistic explanation, we closely examined the catalytic effects of Hf(OTf)₄ on all three potential reaction pathways in both "sequential bimolecular condensations" and "one-pot, three-component" manners. The experimental results showed that the synergistic effects of solvent-free conditions and Hf(OTf)₄ catalysis not only drastically accelerate Biginelli reaction by enhancing the imine route and activating the enamine route but also avoid the formation of Knoevenagel adduct, which may lead to an undesired byproduct. In addition, ¹H-MMR tracing of the H-D exchange reaction of methyl acetoacetate in MeOH-d₄ indicated that Hf(IV) cation may significantly accelerate ketone-enol tautomerization and activate the β-ketone moiety, thereby contributing to the overall reaction rate.
Collapse
Affiliation(s)
- Rui Kong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| | - Shuai-Bo Han
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| | - Jing-Ying Wei
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| | - Xiao-Chong Peng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| | - Zhen-Biao Xie
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| | - Shan-Shan Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| | - Qi Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
18
|
Peng HN, Ye LM, Zhang M, Yang YC, Zheng J. Synthesis and antimicrobial activity of 3,4-dihydropyrimidin-2(1H)-one derivatives containing a hydrazone moiety. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2017-0227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe title compounds were synthesized and characterized by IR,1H NMR,13C NMR and HRMS data. Their antimicrobial activities against bacterial strainsEscherichia coliand fungal strainsAspergillus nigerwere evaluated.
Collapse
|
19
|
Pawłowski R, Zaorska E, Staszko S, Szadkowska A. Copper(I)-catalyzed multicomponent reactions in sustainable media. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Robert Pawłowski
- Biological and Chemical Research Centre; Department of Chemistry, University of Warsaw; Żwirki i Wigury 101 02-089 Warszawa Poland
- Faculty of Chemistry; Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| | - Ewelina Zaorska
- Biological and Chemical Research Centre; Department of Chemistry, University of Warsaw; Żwirki i Wigury 101 02-089 Warszawa Poland
| | - Sebastian Staszko
- Biological and Chemical Research Centre; Department of Chemistry, University of Warsaw; Żwirki i Wigury 101 02-089 Warszawa Poland
| | - Anna Szadkowska
- Biological and Chemical Research Centre; Department of Chemistry, University of Warsaw; Żwirki i Wigury 101 02-089 Warszawa Poland
| |
Collapse
|
20
|
Screening of pharmacokinetic properties of fifty dihydropyrimidin(thi)one derivatives using a combo of in vitro and in silico assays. Eur J Pharm Sci 2017; 109:334-346. [DOI: 10.1016/j.ejps.2017.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/19/2022]
|
21
|
Essid I, Lahbib K, Kaminsky W, Ben Nasr C, Touil S. 5-phosphonato-3,4-dihydropyrimidin-2(1 H )-ones: Zinc triflate-catalyzed one-pot multi-component synthesis, X-ray crystal structure and anti-inflammatory activity. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Matias M, Campos G, Silvestre S, Falcão A, Alves G. Early preclinical evaluation of dihydropyrimidin(thi)ones as potential anticonvulsant drug candidates. Eur J Pharm Sci 2017; 102:264-274. [PMID: 28315465 DOI: 10.1016/j.ejps.2017.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/19/2017] [Accepted: 03/10/2017] [Indexed: 11/28/2022]
|