1
|
Zhao Y, Yan J, Yu J, Ding B. Electrospun Nanofiber Electrodes for Lithium-Ion Batteries. Macromol Rapid Commun 2023; 44:e2200740. [PMID: 36271746 DOI: 10.1002/marc.202200740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Electrospun nanofiber materials have the advantages of good continuity, large specific surface areas, and high structural tunability, which provide many desirable characteristics for lithium-ion battery electrodes. Here, the principles and advantages of electrospinning technology are first elaborated, then the previous studies on high-performance nanofibrous electrode materials prepared by electrospinning technology are comprehensively summarized, and the correlation between 1D nanostructured materials and electrode performances is discussed. Finally, the remaining challenges of nanofibrous electrodes are proposed and some future study directions of this particular area are pointed out. This review provides new enlightenment for the design of nanofibrous electrodes toward high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Yun Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianhua Yan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.,School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| |
Collapse
|
2
|
Lv R, Wu H, Jiang Z, Zheng A, Yu H, Chen M. Flexible hydrogel compound of V2O5/GO/PVA for enhancing mechanical and zinc storage performances. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Wu H, Yan C, Xu L, Xu N, Wu X, Jiang Z, Zhu S, Diao G, Chen M. Super Flexible Cathode Material with 3D Cross‐Linking System Based on Polyvinyl Alcohol Hydrogel for Boosting Aqueous Zinc Ion Batteries. ChemElectroChem 2022. [DOI: 10.1002/celc.202200288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huayu Wu
- Yangzhou University School of Chemistry & Chemical Engineering CHINA
| | - Chenyi Yan
- Yangzhou University School of Chemistry & Chemical Engineering CHINA
| | - Lin Xu
- Yangzhou University School of Chemistry & Chemical Engineering CHINA
| | - Nuo Xu
- Yangzhou University School of Chemistry & Chemical Engineering CHINA
| | - Xiaoyu Wu
- Yangzhou University School of Chemistry & Chemical Engineering CHINA
| | - Zhouheng Jiang
- Yangzhou University School of Chemistry & Chemical Engineering CHINA
| | - Shoupu Zhu
- Shandong University of Science and Technology College of Electrical Engineering and Automation CHINA
| | - Guowang Diao
- Yangzhou University School of Chemistry & Chemical Engineering CHINA
| | - Ming Chen
- Yangzhou University College of Chemistry and Chemical Engineering Si wang ting Road, No.180 CHINA
| |
Collapse
|
4
|
Zhang WM, Yan J, Su Q, Han J, Gao JF. Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance. J Colloid Interface Sci 2022; 612:66-75. [PMID: 34974259 DOI: 10.1016/j.jcis.2021.12.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
Interfacial evaporation has recently received great interest from both academia and industry to harvest fresh water from seawater, due to its low cost, sustainability and high efficiency. However, state-of-the-art solar absorbers usually face several issues such as weak corrosion resistance, salt accumulation and hence poor long-term evaporation stability. Herein, a hydrophobic and porous carbon nanofiber (HPCNF) is prepared by combination of the porogen sublimation and fluorination. The HPCNF possessing a macro/meso porous structure exhibits large contact angles (as high as 145°), strong light absorption and outstanding photo-thermal conversion performance. When the HPCNF is used as the solar absorber, the evaporation rate and efficiency can reach up to 1.43 kg m-2h-1 and 87.5% under one sunlight irradiation, respectively. More importantly, the outstanding water proof endows the absorber with superior corrosion resistance and salt rejection performance, and hence the interfacial evaporation can maintain a long-term stability and proceed in a variety of complex conditions. The HPCNFs based interfacial evaporation provides a new avenue to the high efficiency solar steam generation.
Collapse
Affiliation(s)
- Wei-Miao Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
| | - Qin Su
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
| | - Jiang Han
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
| | - Jie-Feng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, P. R. China; Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Building 22, Qinyuan, No.2318, Yuhangtang Road, Cangqian Street, Yuhang District, Hangzhou 311121, People's Republic of China.
| |
Collapse
|
5
|
Zhang W, Zhang L, Guo J, Lee J, Lin L, Diao G. Carbon Nanofibers Based on Potassium Citrate/Polyacrylonitrile for Supercapacitors. MEMBRANES 2022; 12:membranes12030272. [PMID: 35323748 PMCID: PMC8951469 DOI: 10.3390/membranes12030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Wearable supercapacitors based on carbon materials have been emerging as an advanced technology for next-generation portable electronic devices with high performance. However, the application of these devices cannot be realized unless suitable flexible power sources are developed. Here, an effective electrospinning method was used to prepare the one-dimensional (1D) and nano-scale carbon fiber membrane based on potassium citrate/polyacrylonitrile (PAN), which exhibited potential applications in supercapacitors. The chemical and physical properties of carbon nanofibers were characterized by X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and the Brunnauer–Emmett–Teller method. The fabricated carbon nanofiber membrane illustrates a high specific capacitance of 404 F/g at a current density of 1 A/g. The good electrochemical properties could be attributed to the small diameter and large specific surface area, which promoted a high capacity.
Collapse
Affiliation(s)
- Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China; (W.Z.); (L.Z.); (J.G.)
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-si 16229, Korea
| | - Ludan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China; (W.Z.); (L.Z.); (J.G.)
| | - Junqiang Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China; (W.Z.); (L.Z.); (J.G.)
| | - Jeongyeon Lee
- Institute of Textiles Clothing, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China;
| | - Liwei Lin
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-si 16229, Korea
- Correspondence: (L.L.); (G.D.)
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China; (W.Z.); (L.Z.); (J.G.)
- Correspondence: (L.L.); (G.D.)
| |
Collapse
|
6
|
Meng X, Huang J, Bian Y, Du H, Xu Y, Zhu S, Li Q, Chen M, Lin MC. Flexible Fe3O4/PCNFs membrane prepared by an innovative method as high-performance anode for lithium-ion battery. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Barhoum A, Favre T, Sayegh S, Tanos F, Coy E, Iatsunskyi I, Razzouk A, Cretin M, Bechelany M. 3D Self-Supported Nitrogen-Doped Carbon Nanofiber Electrodes Incorporated Co/CoO x Nanoparticles: Application to Dyes Degradation by Electro-Fenton-Based Process. NANOMATERIALS 2021; 11:nano11102686. [PMID: 34685127 PMCID: PMC8540561 DOI: 10.3390/nano11102686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
We developed free-standing nitrogen-doped carbon nanofiber (CNF) electrodes incorporating Co/CoOx nanoparticles (NPs) as a new cathode material for removing Acid Orange 7 (AO7; a dye for wool) from wastewater by the heterogeneous electro-Fenton reaction. We produced the free-standing N-doped CNF electrodes by electrospinning a polyacrylonitrile (PAN) and cobalt acetate solution followed by thermal carbonation of the cobalt acetate/PAN nanofibers under a nitrogen atmosphere. We then investigated electro-Fenton-based removal of AO7 from wastewater with the free-standing N-doped-CNFs-Co/CoOx electrodes, in the presence or not of Fe2+ ions as a co-catalyst. The electrochemical analysis showed the high stability of the prepared N-doped-CNF-Co/CoOx electrodes in electrochemical oxidation experiments with excellent degradation of AO7 (20 mM) at acidic to near neutral pH values (3 and 6). Electro-Fenton oxidation at 10 mA/cm2 direct current for 40 min using the N-doped-CNF-Co/CoOx electrodes loaded with 25 wt% of Co/CoOx NPs led to complete AO7 solution decolorization with total organic carbon (TOC) removal values of 92.4% at pH 3 and 93.3% at pH 6. The newly developed N-doped-CNF-Co/CoOx electrodes are an effective alternative technique for wastewater pre-treatment before the biological treatment.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- School of Chemical Sciences, Fraunhofer Project Centre, Dublin City University, D09 V209 Dublin, Ireland
- Correspondence: (A.B.); (M.B.)
| | - Therese Favre
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
| | - Syreina Sayegh
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- Laboratoire d’Analyses Chimiques, Faculty of Sciences, LAC—Lebanese University, Jdeidet 90656, Lebanon;
| | - Fida Tanos
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- Laboratoire d’Analyses Chimiques, Faculty of Sciences, LAC—Lebanese University, Jdeidet 90656, Lebanon;
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland; (E.C.); (I.I.)
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland; (E.C.); (I.I.)
| | - Antonio Razzouk
- Laboratoire d’Analyses Chimiques, Faculty of Sciences, LAC—Lebanese University, Jdeidet 90656, Lebanon;
| | - Marc Cretin
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- Correspondence: (A.B.); (M.B.)
| |
Collapse
|
8
|
Song X, Huang X, Luo J, Long B, Zhang W, Wang L, Gao J, Xue H. Flexible, superhydrophobic and multifunctional carbon nanofiber hybrid membranes for high performance light driven actuators. NANOSCALE 2021; 13:12017-12027. [PMID: 34231636 DOI: 10.1039/d1nr02254g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, a series of super-hydrophobic materials have been prepared and efforts have been made to further expand their applications, especially in electronics and smart actuators. However, it remains challenging to develop light weight, flexible and super-hydrophobic materials integrating multifunctionalities such as superior photothermal conversion, corrosion resistance, and controllable actuation. Herein, a superhydrophobic and multi-responsive carbon nanofiber (CNF) hybrid membrane with an outstanding photo-thermal effect is fabricated by electrospinning the mixture of polyacrylonitrile and nickel acetylacetonate, followed by two step heat treatment and subsequent fluorination. The superhydrophobic CNF hybrid membrane with outstanding anti-corrosion and self-cleaning performance can float on the water surface spontaneously, thus effectively reducing the motion resistance. The light driven actuation with controllable movement can be achieved by adjusting the laser irradiated location, in which the localized absorption of light is transformed into thermal energy, and hence an imbalanced surface tension is created. The multifunctional hybrid membrane also opens up an arena of applications such as freestanding flexible electronics, drug delivery, and environmental protection.
Collapse
Affiliation(s)
- Xin Song
- Guangling College, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lee BS. A Review of Recent Advancements in Electrospun Anode Materials to Improve Rechargeable Lithium Battery Performance. Polymers (Basel) 2020; 12:polym12092035. [PMID: 32906780 PMCID: PMC7565479 DOI: 10.3390/polym12092035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/21/2023] Open
Abstract
Although lithium-ion batteries have already had a considerable impact on making our lives smarter, healthier, and cleaner by powering smartphones, wearable devices, and electric vehicles, demands for significant improvement in battery performance have grown with the continuous development of electronic devices. Developing novel anode materials offers one of the most promising routes to meet these demands and to resolve issues present in existing graphite anodes, such as a low theoretical capacity and poor rate capabilities. Significant improvements over current commercial batteries have been identified using the electrospinning process, owing to a simple processing technique and a wide variety of electrospinnable materials. It is important to understand previous work on nanofiber anode materials to establish strategies that encourage the implementation of current technological developments into commercial lithium-ion battery production, and to advance the design of novel nanofiber anode materials that will be used in the next-generation of batteries. This review identifies previous research into electrospun nanofiber anode materials based on the type of electrochemical reactions present and provides insights that can be used to improve conventional lithium-ion battery performances and to pioneer novel manufacturing routes that can successfully produce the next generation of batteries.
Collapse
Affiliation(s)
- Byoung-Sun Lee
- School of Polymer System/Department of Fiber Converged Material Engineering, College of Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin 16890, Korea
| |
Collapse
|
10
|
Barhoum A, El-Maghrabi HH, Iatsunskyi I, Coy E, Renard A, Salameh C, Weber M, Sayegh S, Nada AA, Roualdes S, Bechelany M. Atomic layer deposition of Pd nanoparticles on self-supported carbon-Ni/NiO-Pd nanofiber electrodes for electrochemical hydrogen and oxygen evolution reactions. J Colloid Interface Sci 2020; 569:286-297. [PMID: 32114107 DOI: 10.1016/j.jcis.2020.02.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
The most critical challenge in hydrogen fuel production is to develop efficient, eco-friendly, low-cost electrocatalysts for water splitting. In this study, self-supported carbon nanofiber (CNF) electrodes decorated with nickel/nickel oxide (Ni/NiO) and palladium (Pd) nanoparticles (NPs) were prepared by combining electrospinning, peroxidation, and thermal carbonation with atomic layer deposition (ALD), and then employed for hydrogen evolution and oxygen evolution reactions (HER/OER). The best CNF-Ni/NiO-Pd electrode displayed the lowest overpotential (63 mV and 1.6 V at j = 10 mA cm-2), a remarkably small Tafel slope (72 and 272 mV dec-1), and consequent exchange current density (1.15 and 22.4 mA cm-2) during HER and OER, respectively. The high chemical stability and improved electrocatalytic performance of the prepared electrodes can be explained by CNF functionalization via Ni/NiO NP encapsulation, the formation of graphitic layers that cover and protect the Ni/NiO NPs from corrosion, and ALD of Pd NPs at the surface of the self-supported CNF-Ni/NiO electrodes.
Collapse
Affiliation(s)
- Ahmed Barhoum
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt; Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France.
| | - Heba H El-Maghrabi
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France; Dept. of Refining, Egyptian Petroleum Research Institute, Cairo, Nasr City P.B. 11727, Egypt
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614 Poznan, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614 Poznan, Poland
| | - Aurélien Renard
- LCPME - UMR 7564 - CNRS - Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-Les-Nancy, France
| | - Chrystelle Salameh
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Matthieu Weber
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Syreina Sayegh
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Amr A Nada
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France; Dept. of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, Nasr City P.B. 11727, Egypt
| | - Stéphanie Roualdes
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France.
| |
Collapse
|
11
|
Zhou Y, Wemyss AM, Brown OB, Huang Q, Wan C. Structure and electrochemical properties of hierarchically porous carbon nanomaterials derived from hybrid ZIF-8/ZIF-67 bi-MOF coated cyclomatrix poly(organophosphazene) nanospheres. NEW J CHEM 2020. [DOI: 10.1039/d0nj00040j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hierarchically porous carbon nanostructures with intrinsically doped heteroatoms and metal elements are attractive for electrochemical energy storage applications.
Collapse
Affiliation(s)
- Yutao Zhou
- International Institute for Nanocomposites Manufacturing (IINM)
- WMG
- University of Warwick
- UK
| | - Alan M. Wemyss
- International Institute for Nanocomposites Manufacturing (IINM)
- WMG
- University of Warwick
- UK
| | - Oliver B. Brown
- International Institute for Nanocomposites Manufacturing (IINM)
- WMG
- University of Warwick
- UK
| | - Qianye Huang
- Energy Innovation Centre (EIC)
- WMG
- University of Warwick
- UK
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM)
- WMG
- University of Warwick
- UK
| |
Collapse
|
12
|
Graphitic carbon materials extracted from spent carbon cathode of aluminium reduction cell as anodes for lithium ion batteries: Converting the hazardous wastes into value-added materials. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|