1
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Wu S, Lai Y, Zheng X, Yang Y. Facile fabrication of linezolid/strontium coated hydroxyapatite/graphene oxide nanocomposite for osteoporotic bone defect. Heliyon 2024; 10:e31638. [PMID: 38947479 PMCID: PMC11214387 DOI: 10.1016/j.heliyon.2024.e31638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Hydroxyapatite (HAp) coatings currently have limited therapeutic applications because they lack anti-infection, osteoinductivity, and poor mechanical characteristics. On the titanium substrate, electrochemical deposition (ECD) was used to construct the strontium (Sr)-featuring hydroxyapatite (HAp)/graphene oxides (GO)/linezolid (LZ) nanomaterial coated with antibacterial and drug delivery properties. The newly fabricated nanomaterials were confirmed by X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis and morphological features were examined by scanning electron microscope (SEM) analysis. The results reveal multiple nucleation sites for SrHAp/GO/LZ composite coatings due to oxygen-comprising moieties on the 2D surface of GO. It was shown to be favorable for osteoblast proliferation and differentiation. The elastic modulus and hardness of LZ nanocomposite with SrHAp/GO/LZ coatings were increased by 67 % and 121 %, respectively. An initial 5 h burst of LZ release from the SrHAp/GO/LZ coating was followed by 14 h of gradual release, owing to LZ's physical and chemical adsorption. The SrHAp/GO/LZ coating effectively inhibited both S. epidermidis and S. aureus, and the inhibition lasted for three days, as demonstrated by the inhibition zone and colony count assays. When MG-63 cells are coated with SrHAp/GO/LZ composite coating, their adhesion, proliferation, and differentiation greatly improve when coated with pure titanium. A novel surface engineering nanomaterial for treating and preventing osteoporotic bone defects, SrHAp/GO/LZ, was shown to have high mechanical characteristics, superior antibacterial abilities, and osteoinductivity.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, 463003, China
- Medical College, Huanghuai University, Zhumadian, 463003, China
| | - Yunxiao Lai
- Medical College, Huanghuai University, Zhumadian, 463003, China
| | - Xian Zheng
- Department of Obstetrics, Wenling First People's Hospital, Wenling, 317500, China
| | - Yang Yang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, 463003, China
- Medical College, Huanghuai University, Zhumadian, 463003, China
| |
Collapse
|
3
|
Khan T, Vadivel G, Ramasamy B, Murugesan G, Sebaey TA. Biodegradable Conducting Polymer-Based Composites for Biomedical Applications-A Review. Polymers (Basel) 2024; 16:1533. [PMID: 38891481 PMCID: PMC11175044 DOI: 10.3390/polym16111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, researchers have increasingly directed their focus toward the biomedical field, driven by the goal of engineering polymer systems that possess a unique combination of both electrical conductivity and biodegradability. This convergence of properties holds significant promise, as it addresses a fundamental requirement for biomedical applications: compatibility with biological environments. These polymer systems are viewed as auspicious biomaterials, precisely because they meet this critical criterion. Beyond their biodegradability, these materials offer a range of advantageous characteristics. Their exceptional processability enables facile fabrication into various forms, and their chemical stability ensures reliability in diverse physiological conditions. Moreover, their low production costs make them economically viable options for large-scale applications. Notably, their intrinsic electrical conductivity further distinguishes them, opening up possibilities for applications that demand such functionality. As the focus of this review, a survey into the use of biodegradable conducting polymers in tissue engineering, biomedical implants, and antibacterial applications is conducted.
Collapse
Affiliation(s)
- Tabrej Khan
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Gayathri Vadivel
- Department of Physics, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| | - Balan Ramasamy
- Department of Physics, Government Arts and Science College, Mettupalayam 641104, Tamil Nadu, India
| | - Gowtham Murugesan
- Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Tamer A. Sebaey
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Sharkia, Egypt
| |
Collapse
|
4
|
Casella A, Panitch A, Leach JK. Electroconductive agarose hydrogels modulate mesenchymal stromal cell adhesion and spreading through protein adsorption. J Biomed Mater Res A 2023; 111:596-608. [PMID: 36680496 PMCID: PMC10023318 DOI: 10.1002/jbm.a.37503] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Electrically conductive biomaterials direct cell behavior by capitalizing on the effect of bioelectricity in tissue homeostasis and healing. Many studies have leveraged conductive biomaterials to influence cells and improve tissue healing, even in the absence of external stimulation. However, most studies using electroactive materials neglect characterizing how the inclusion of conductive additives affects the material's mechanical properties, and the interplay between substrate electrical and mechanical properties on cell behavior is poorly understood. Furthermore, mechanisms dictating how electrically conductive materials affect cell behavior in the absence of external stimulation are not explicit. In this study, we developed a mechanically and electrically tunable conductive hydrogel using agarose and the conductive polymer PEDOT:PSS. Under certain conditions, we observed that the hydrogel physical and electrical properties were decoupled. We then seeded human mesenchymal stromal cells (MSCs) onto the hydrogels and observed enhanced adhesion and spreading of MSCs on conductive substrates, regardless of the hydrogel mechanical properties, and despite the gels having no cell-binding sites. To explain this observation, we measured protein interaction with the gels and found that charged proteins adsorbed significantly more to conductive hydrogels. These data demonstrate that conductivity promotes cell adhesion, likely by facilitating increased adsorption of proteins associated with cell binding, providing a better understanding of the mechanism of action of electrically conductive materials.
Collapse
Affiliation(s)
- Alena Casella
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| | - Alyssa Panitch
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
5
|
Micropatterned Polypyrrole/Hydroxyapatite Composite Coatings Promoting Osteoinductive Activity by Electrical Stimulation. COATINGS 2022. [DOI: 10.3390/coatings12060849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conductive polypyrrole (PPy) has excellent biocompatibility and structural stability. It is an ideal electroactive biomaterial that can apply exogenous electrical stimulation to promote osteoblast differentiation. However, PPy is a kind of bio-inert material, which does not have osteoinductive capacity. Therefore, we have introduced a kind of bioactive material, hydroxyapatite (HA), to construct PPy/HA composite to enhance bioactivity and osteoinduction. In addition, micron-topological morphology of scattered grid pattern has been designed and introduced to the PPy/HA coatings, which can further enhance the regulation ability of the coatings to the adhesion, proliferation and differentiation of MC3T3-E1 cells. In vitro simulated body fluids (SBFs) immersion test results have demonstrated that the fabricated micropatterned PPy/HA composite coatings perform bioactivity well and can promote the mineral deposition of HA on the surface. Moreover, it can also benefit the proliferation and osteognetic differentiation of MC3T3-E1 cells, when accompanied by external electrical stimulation (ES). In this study, we have successfully constructed electroactive and bioactive coatings, the method of which can potentially be applied to the surface functional modification of traditional bone repair metals.
Collapse
|
6
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Sahebalzamani M, Ziminska M, McCarthy HO, Levingstone TJ, Dunne NJ, Hamilton AR. Advancing bone tissue engineering one layer at a time: a layer-by-layer assembly approach to 3D bone scaffold materials. Biomater Sci 2022; 10:2734-2758. [PMID: 35438692 DOI: 10.1039/d1bm01756j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The layer-by-layer (LbL) assembly technique has shown excellent potential in tissue engineering applications. The technique is mainly based on electrostatic attraction and involves the sequential adsorption of oppositely charged electrolyte complexes onto a substrate, resulting in uniform single layers that can be rapidly deposited to form nanolayer films. LbL has attracted significant attention as a coating technique due to it being a convenient and affordable fabrication method capable of achieving a wide range of biomaterial coatings while keeping the main biofunctionality of the substrate materials. One promising application is the use of nanolayer films fabricated by LbL assembly in the development of 3-dimensional (3D) bone scaffolds for bone repair and regeneration. Due to their versatility, nanoscale films offer an exciting opportunity for tailoring surface and bulk property modification of implants for osseous defect therapies. This review article discusses the state of the art of the LbL assembly technique, and the properties and functions of LbL-assembled films for engineered bone scaffold application, combination of multilayers for multifunctional coatings and recent advancements in the application of LbL assembly in bone tissue engineering. The recent decade has seen tremendous advances in the promising developments of LbL film systems and their impact on cell interaction and tissue repair. A deep understanding of the cell behaviour and biomaterial interaction for the further development of new generations of LbL films for tissue engineering are the most important targets for biomaterial research in the field. While there is still much to learn about the biological and physicochemical interactions at the interface of nano-surface coated scaffolds and biological systems, we provide a conceptual review to further progress in the LbL approach to 3D bone scaffold materials and inform the future of LbL development in bone tissue engineering.
Collapse
Affiliation(s)
- MohammadAli Sahebalzamani
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland.
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. .,School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland. .,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland. .,School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. .,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Andrew R Hamilton
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
8
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
9
|
Mai X, Kang Z, Wang N, Qin X, Xie W, Song F. Oxygen Plasma Technology-Assisted Preparation of Three-Dimensional Reduced Graphene Oxide/Polypyrrole/Strontium Composite Scaffold for Repair of Bone Defects Caused by Osteoporosis. Molecules 2021; 26:4451. [PMID: 34361602 PMCID: PMC8347243 DOI: 10.3390/molecules26154451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Repairs of bone defects caused by osteoporosis have always relied on bone tissue engineering. However, the preparation of composite tissue engineering scaffolds with a three-dimensional (3D) macroporous structure poses huge challenges in achieving osteoconduction and osteoinduction for repairing bone defects caused by osteoporosis. In the current study, a three-dimensional macroporous (150-300 μm) reduced graphene oxide/polypyrrole composite scaffold modified by strontium (Sr) (3D rGO/PPY/Sr) was successfully prepared using the oxygen plasma technology-assisted method, which is simple, safe, and inexpensive. The findings of the MTT assay and AO/EB fluorescence double staining showed that 3D rGO/PPY/Sr has a good biocompatibility and effectively promoted MC3T3-E1 cell proliferation. Furthermore, the ALP assay and alizarin red staining showed that 3D rGO/PPY/Sr increased the expression levels of ALP activity and the formation of calcified nodules. The desirable biocompatibility, osteoconduction, and osteoinduction abilities, assure that the 3D macroporous rGO/PPY/Sr composite scaffold offers promising potential for use in the repair of bone defects caused by osteoporosis in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaoxue Mai
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (X.M.); (Z.K.); (N.W.); (X.Q.)
| | - Zebiao Kang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (X.M.); (Z.K.); (N.W.); (X.Q.)
| | - Na Wang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (X.M.); (Z.K.); (N.W.); (X.Q.)
| | - Xiaoli Qin
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (X.M.); (Z.K.); (N.W.); (X.Q.)
| | - Weibo Xie
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (X.M.); (Z.K.); (N.W.); (X.Q.)
- Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Fuxiang Song
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (X.M.); (Z.K.); (N.W.); (X.Q.)
| |
Collapse
|
10
|
Miar S, Ong JL, Bizios R, Guda T. Electrically Stimulated Tunable Drug Delivery From Polypyrrole-Coated Polyvinylidene Fluoride. Front Chem 2021; 9:599631. [PMID: 33614599 PMCID: PMC7892451 DOI: 10.3389/fchem.2021.599631] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Electrical stimulus-responsive drug delivery from conducting polymers such as polypyrrole (PPy) has been limited by lack of versatile polymerization techniques and limitations in drug-loading strategies. In the present study, we report an in-situ chemical polymerization technique for incorporation of biotin, as the doping agent, to establish electrosensitive drug release from PPy-coated substrates. Aligned electrospun polyvinylidene fluoride (PVDF) fibers were used as a substrate for the PPy-coating and basic fibroblast growth factor and nerve growth factor were the model growth factors demonstrated for potential applications in musculoskeletal tissue regeneration. It was observed that 18-h of continuous polymerization produced an optimal coating of PPy on the surface of the PVDF electrospun fibers with significantly increased hydrophilicity and no substantial changes observed in fiber orientation or individual fiber thickness. This PPy-PVDF system was used as the platform for loading the aforementioned growth factors, using streptavidin as the drug-complex carrier. The release profile of incorporated biotinylated growth factors exhibited electrosensitive release behavior while the PPy-PVDF complex proved stable for a period of 14 days and suitable as a stimulus responsive drug delivery depot. Critically, the growth factors retained bioactivity after release. In conclusion, the present study established a systematic methodology to prepare PPy coated systems with electrosensitive drug release capabilities which can potentially be used to encourage targeted tissue regeneration and other biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
11
|
Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, Menna E, Filippini F. Graphene-Based Scaffolds for Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:404. [PMID: 33562559 PMCID: PMC7914745 DOI: 10.3390/nano11020404] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Leading-edge regenerative medicine can take advantage of improved knowledge of key roles played, both in stem cell fate determination and in cell growth/differentiation, by mechano-transduction and other physicochemical stimuli from the tissue environment. This prompted advanced nanomaterials research to provide tissue engineers with next-generation scaffolds consisting of smart nanocomposites and/or hydrogels with nanofillers, where balanced combinations of specific matrices and nanomaterials can mediate and finely tune such stimuli and cues. In this review, we focus on graphene-based nanomaterials as, in addition to modulating nanotopography, elastic modulus and viscoelastic features of the scaffold, they can also regulate its conductivity. This feature is crucial to the determination and differentiation of some cell lineages and is of special interest to neural regenerative medicine. Hereafter we depict relevant properties of such nanofillers, illustrate how problems related to their eventual cytotoxicity are solved via enhanced synthesis, purification and derivatization protocols, and finally provide examples of successful applications in regenerative medicine on a number of tissues.
Collapse
Affiliation(s)
- Pietro Bellet
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Matteo Gasparotto
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Samuel Pressi
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Anna Fortunato
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Giorgia Scapin
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Miriam Mba
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Enzo Menna
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Francesco Filippini
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| |
Collapse
|
12
|
Eivazzadeh-Keihan R, Bahojb Noruzi E, Khanmohammadi Chenab K, Jafari A, Radinekiyan F, Hashemi SM, Ahmadpour F, Behboudi A, Mosafer J, Mokhtarzadeh A, Maleki A, Hamblin MR. Metal-based nanoparticles for bone tissue engineering. J Tissue Eng Regen Med 2020; 14:1687-1714. [PMID: 32914573 DOI: 10.1002/term.3131] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Tissue is vital to the organization of multicellular organisms, because it creates the different organs and provides the main scaffold for body shape. The quest for effective methods to allow tissue regeneration and create scaffolds for new tissue growth has intensified in recent years. Tissue engineering has recently used some promising alternatives to existing conventional scaffold materials, many of which have been derived from nanotechnology. One important example of these is metal nanoparticles. The purpose of this review is to cover novel tissue engineering methods, paying special attention to those based on the use of metal-based nanoparticles. The unique physiochemical properties of metal nanoparticles, such as antibacterial effects, shape memory phenomenon, low cytotoxicity, stimulation of the proliferation process, good mechanical and tensile strength, acceptable biocompatibility, significant osteogenic potential, and ability to regulate cell growth pathways, suggest that they can perform as novel types of scaffolds for bone tissue engineering. The basic principles of various nanoparticle-based composites and scaffolds are discussed in this review. The merits and demerits of these particles are critically discussed, and their importance in bone tissue engineering is highlighted.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Masoud Hashemi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Farnoush Ahmadpour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Behboudi
- Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Manoj M, Song J, Zhu W, Zhou H, Zhang J, Meena P, Yuan A. Polymer-assisted synthesis and applications of hydroxyapatite (HAp) anchored nitrogen-doped 3D graphene foam-based nanostructured ceramic framework. RSC Adv 2020; 10:17918-17929. [PMID: 35515624 PMCID: PMC9053610 DOI: 10.1039/d0ra01852j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
In the present work, a hydroxyapatite anchored nitrogen-doped three-dimensional graphene (HAp-N3DG) skeletal network (foam) based nanostructured ceramic framework (CF) was developed through a polymer-assisted solvothermal route. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies reveal that the nano sized 0D HAp particles are anchored on the N3DG skeletal network with an average size of less than 50 nm. EDX and X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of Ca, P, O, N, and C. In addition, XPS analysis reveals the existence of N-C bonds in the prepared sample. The X-ray diffraction (XRD) patterns indicate the presence of hexagonal phase hydroxyapatite and the calculated average crystallite size was found to be 12 nm. The developed HAp-N3DG foam based nanostructured CF was found to have a mesoporous structure and the measured specific surface area (SSA) and the mean pore diameter were found to be 64.73 m2 g-1 and 23.6 nm, respectively. Electrochemical analysis shows that HAp anchored on nitrogen-doped 3D graphene foam based nanostructured CF has moderate electrochemical activity towards lithium ion charge/discharge. In addition, the prepared material showed adsorption activity values of 204.89 mg g-1 and 243.89 mg g-1 for the volatile organic compounds (VOCs) benzene and toluene, respectively. The present findings suggest that the newly developed HAp anchored nitrogen-doped 3DG (HAp-N3DG) skeletal network (foam) based nanostructured CF material can be used in energy devices and in the removal of volatile organic compounds. Moreover, the present study initiates a new kind of approach in energy device (lithium ion battery-LIB) research and in the removal of VOCs.
Collapse
Affiliation(s)
- Murugesan Manoj
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 P. R. China
| | - Jinbo Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 P. R. China
| | - Wenjian Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 P. R. China
| | - Hu Zhou
- School of Material Science and Technology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 P. R. China
| | - Junhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 P. R. China
| | - Palaniappan Meena
- Department of Physics, PSGR Krishnammal College for Women Coimbatore - 641004 India
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 P. R. China
| |
Collapse
|
14
|
Peng Z, Zhao T, Zhou Y, Li S, Li J, Leblanc RM. Bone Tissue Engineering via Carbon-Based Nanomaterials. Adv Healthc Mater 2020; 9:e1901495. [PMID: 31976623 DOI: 10.1002/adhm.201901495] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Indexed: 01/14/2023]
Abstract
Bone tissue engineering (BTE) has received significant attention due to its enormous potential in treating critical-sized bone defects and related diseases. Traditional materials such as metals, ceramics, and polymers have been widely applied as BTE scaffolds; however, their clinical applications have been rather limited due to various considerations. Recently, carbon-based nanomaterials attract significant interests for their applications as BTE scaffolds due to their superior properties, including excellent mechanical strength, large surface area, tunable surface functionalities, high biocompatibility as well as abundant and inexpensive nature. In this article, recent studies and advancements on the use of carbon-based nanomaterials with different dimensions such as graphene and its derivatives, carbon nanotubes, and carbon dots, for BTE are reviewed. Current challenges of carbon-based nanomaterials for BTE and future trends in BTE scaffolds development are also highlighted and discussed.
Collapse
Affiliation(s)
- Zhili Peng
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Tianshu Zhao
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Shanghao Li
- MP Biomedicals, 9 Goddard, Irvine, CA, 92618, USA
| | - Jiaojiao Li
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| |
Collapse
|
15
|
Maráková N, Boeva ZA, Humpolíček P, Lindfors T, Pacherník J, Kašpárková V, Radaszkiewicz KA, Capáková Z, Minařík A, Lehocký M. Electrochemically prepared composites of graphene oxide and conducting polymers: Cytocompatibility of cardiomyocytes and neural progenitors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110029. [DOI: 10.1016/j.msec.2019.110029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 01/07/2023]
|
16
|
Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarzadeh A, Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res 2019; 18:185-201. [PMID: 31032119 PMCID: PMC6479020 DOI: 10.1016/j.jare.2019.03.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 01/29/2023] Open
Abstract
Tissue engineering is a rapidly-growing approach to replace and repair damaged and defective tissues in the human body. Every year, a large number of people require bone replacements for skeletal defects caused by accident or disease that cannot heal on their own. In the last decades, tissue engineering of bone has attracted much attention from biomedical scientists in academic and commercial laboratories. A vast range of biocompatible advanced materials has been used to form scaffolds upon which new bone can form. Carbon nanomaterial-based scaffolds are a key example, with the advantages of being biologically compatible, mechanically stable, and commercially available. They show remarkable ability to affect bone tissue regeneration, efficient cell proliferation and osteogenic differentiation. Basically, scaffolds are templates for growth, proliferation, regeneration, adhesion, and differentiation processes of bone stem cells that play a truly critical role in bone tissue engineering. The appropriate scaffold should supply a microenvironment for bone cells that is most similar to natural bone in the human body. A variety of carbon nanomaterials, such as graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds and their derivatives that are able to act as scaffolds for bone tissue engineering, are covered in this review. Broadly, the ability of the family of carbon nanomaterial-based scaffolds and their critical role in bone tissue engineering research are discussed. The significant stimulating effects on cell growth, low cytotoxicity, efficient nutrient delivery in the scaffold microenvironment, suitable functionalized chemical structures to facilitate cell-cell communication, and improvement in cell spreading are the main advantages of carbon nanomaterial-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Alegret N, Dominguez-Alfaro A, Mecerreyes D. 3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules 2018; 20:73-89. [PMID: 30543402 DOI: 10.1021/acs.biomac.8b01382] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
3D scaffolds appear to be a cost-effective ultimate answer for biomedical applications, facilitating rapid results while providing an environment similar to in vivo tissue. These biomaterials offer large surface areas for cell or biomaterial attachment, proliferation, biosensing and drug delivery applications. Among 3D scaffolds, the ones based on conjugated polymers (CPs) and natural nonconductive polymers arranged in a 3D architecture provide tridimensionality to cellular culture along with a high surface area for cell adherence and proliferation as well electrical conductivity for stimulation or sensing. However, the scaffolds must also obey other characteristics: homogeneous porosity, with pore sizes large enough to allow cell penetration and nutrient flow; elasticity and wettability similar to the tissue of implantation; and a suitable composition to enhance cell-matrix interactions. In this Review, we summarize the fabrication methods, characterization techniques and main applications of conductive 3D scaffolds based on conductive polymers. The main barrier in the development of these platforms has been the fabrication and subsequent maintenance of the third dimension due to challenges in the manipulation of conductive polymers. In the last decades, different approaches to overcome these barriers have been developed for the production of conductive 3D scaffolds, demonstrating a huge potential for biomedical purposes. Finally, we present an overview of the emerging strategies developed to manufacture 3D conductive scaffolds, the techniques used to fully characterize them, and the biomedical fields where they have been applied.
Collapse
Affiliation(s)
- Nuria Alegret
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Cardiovascular Institute, School of Medicine, Division of Cardiology , University of Colorado Denver Anschutz Medical Campus , 12700 E. 19th Avenue, Building P15 , Aurora , Colorado 80045 , United States
| | - Antonio Dominguez-Alfaro
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Carbon Nanobiotechnology Group, CIC biomaGUNE , Paseo de Miramón 182 , 2014 Donostia-San Sebastián , Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Ikerasque, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
18
|
Amani H, Mostafavi E, Arzaghi H, Davaran S, Akbarzadeh A, Akhavan O, Pazoki-Toroudi H, Webster TJ. Three-Dimensional Graphene Foams: Synthesis, Properties, Biocompatibility, Biodegradability, and Applications in Tissue Engineering. ACS Biomater Sci Eng 2018; 5:193-214. [PMID: 33405863 DOI: 10.1021/acsbiomaterials.8b00658] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Presently, clinical nanomedicine and nanobiotechnology have impressively demanded the generation of new organic/inorganic analogues of graphene (as one of the intriguing biomedical research targets) for stem-cell-based tissue engineering. Among different shapes of graphene, three-dimensional (3D) graphene foams (GFs) are highly promising candidates to provide conditions for mimicking in vivo environments, affording effective cell attachment, proliferation,and differentiation due to their unique properties. These include the highest biocompatibility among nanostructures, high surface-to-volume ratio, 3D porous structure (to provide a homogeneous/isotropic growth of tissues), highly favorable mechanical characteristics, and rapid mass and electron transport kinetics (which are required for chemical/physical stimulation of differentiated cells). This review aims to describe recent and rapid advances in the fabrication of 3D GFs, together with their use in tissue engineering and regenerative nanomedicine applications. Moreover, we have summarized a broad range of recent studies about the behaviors, biocompatibility/toxicity,and biodegradability of these materials, both in vitro and in vivo. Finally, the highlights and challenges of these 3D porous structures, compared to the current polymeric scaffold competitors, are discussed.
Collapse
Affiliation(s)
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | | | | | | | | | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Jiang Y, Wang F, Zhou H, Fan Z, Wu C, Zhang J, Liu B, Wang Z. Optimization of strontium aluminate-based mechanoluminescence materials for occlusal examination of artificial tooth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:374-380. [DOI: 10.1016/j.msec.2018.06.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 05/18/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022]
|
20
|
Cheng X, Wan Q, Pei X. Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. NANOSCALE RESEARCH LETTERS 2018; 13:289. [PMID: 30229504 PMCID: PMC6143492 DOI: 10.1186/s11671-018-2694-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023]
Abstract
We have witnessed abundant breakthroughs in research on the bio-applications of graphene family materials in current years. Owing to their nanoscale size, large specific surface area, photoluminescence properties, and antibacterial activity, graphene family materials possess huge potential for bone tissue engineering, drug/gene delivery, and biological sensing/imaging applications. In this review, we retrospect recent progress and achievements in graphene research, as well as critically analyze and discuss the bio-safety and feasibility of various biomedical applications of graphene family materials for bone tissue regeneration.
Collapse
Affiliation(s)
- Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| |
Collapse
|
21
|
Osteogenesis and Antibacterial Activity of Graphene Oxide and Dexamethasone Coatings on Porous Polyetheretherketone via Polydopamine-Assisted Chemistry. COATINGS 2018. [DOI: 10.3390/coatings8060203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Li M, Xiong P, Yan F, Li S, Ren C, Yin Z, Li A, Li H, Ji X, Zheng Y, Cheng Y. An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioact Mater 2018; 3:1-18. [PMID: 29744438 PMCID: PMC5935763 DOI: 10.1016/j.bioactmat.2018.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023] Open
Abstract
Hydroxyapatite (HA) is an attractive bioceramic for hard tissue repair and regeneration due to its physicochemical similarities to natural apatite. However, its low fracture toughness, poor tensile strength and weak wear resistance become major obstacles for potential clinical applications. One promising method to tackle with these problems is exploiting graphene and its derivatives (graphene oxide and reduced graphene oxide) as nanoscale reinforcement fillers to fabricate graphene-based hydroxyapatite composites in the form of powders, coatings and scaffolds. The last few years witnessed increasing numbers of studies on the preparation, mechanical and biological evaluations of these novel materials. Herein, various preparation techniques, mechanical behaviors and toughen mechanism, the in vitro/in vivo biocompatible analysis, antibacterial properties of the graphene-based HA composites are presented in this review.
Collapse
Affiliation(s)
- Ming Li
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Pan Xiong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Yan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhichen Yin
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Ang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Huafang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yufeng Zheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Cheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Jie W, Song F, Li X, Li W, Wang R, Jiang Y, Zhao L, Fan Z, Wang J, Liu B. Enhancing the proliferation of MC3T3-E1 cells on casein phosphopeptide-biofunctionalized 3D reduced-graphene oxide/polypyrrole scaffolds. RSC Adv 2017. [DOI: 10.1039/c7ra02146a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The CPP-biofunctionalized 3D rGO/PPY scaffold can greatly boost the proliferation and differentiation of MC3T3-E1 cells, especially the 3D rGO/PPY/CPP20 scaffold.
Collapse
Affiliation(s)
- Weibo Jie
- Key Laboratory of Mechanics on Disaster and Environment in Western China
- The Ministry of Education
- College of Civil Engineering and Mechanics
- Lanzhou University
- Lanzhou 730000
| | - Fuxiang Song
- School of Stomatology of Lanzhou University
- Lanzhou 730000
- China
- Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
| | - Xiaocheng Li
- Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Wen Li
- School of Stomatology of Lanzhou University
- Lanzhou 730000
- China
| | - Rui Wang
- School of Stomatology of Lanzhou University
- Lanzhou 730000
- China
| | - Yanjiao Jiang
- School of Stomatology of Lanzhou University
- Lanzhou 730000
- China
| | - Libo Zhao
- School of Stomatology of Lanzhou University
- Lanzhou 730000
- China
| | - Zengjie Fan
- School of Stomatology of Lanzhou University
- Lanzhou 730000
- China
| | - Jizeng Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China
- The Ministry of Education
- College of Civil Engineering and Mechanics
- Lanzhou University
- Lanzhou 730000
| | - Bin Liu
- School of Stomatology of Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|