1
|
Ma G, Li X, Cai J, Wang X. Carbon dots-based fluorescent probe for detection of foodborne pathogens and its potential with microfluidics. Food Chem 2024; 451:139385. [PMID: 38663242 DOI: 10.1016/j.foodchem.2024.139385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/26/2024]
Abstract
Concern about food safety triggers demand on rapid, accurate and on-site detection of foodborne pathogens. Among various fluorescent probes for detection, carbon dots (CDs) prepared by carbonization of carbon-rich raw materials show extraordinary performance for their excellent and tailorable photoluminescence property, as well as their facilely gained specificity by surface customization and modification. CDs-based fluorescent probes play a crucial role in many pathogenic bacteria sensing systems. In addition, microfluidic technology with characteristics of portability and functional integration is expected to combine with CDs-based fluorescent probes for point-of-care testing (POCT), which can further enhance the detection property of CDs-based fluorescent probes. Here, this paper reviews CDs-based bacterial detection methods and systems, including the structural modulation of fluorescent probes and pathogenic bacteria detection mechanisms, and describes the potential of combining CDs with microfluidic technology, providing reference for the development of novel rapid detection technology for pathogenic bacteria in food.
Collapse
Affiliation(s)
- Guozhi Ma
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Jihai Cai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
2
|
Szczepankowska J, Khachatryan G, Khachatryan K, Krystyjan M. Carbon Dots-Types, Obtaining and Application in Biotechnology and Food Technology. Int J Mol Sci 2023; 24:14984. [PMID: 37834430 PMCID: PMC10573487 DOI: 10.3390/ijms241914984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Materials with a "nano" structure are increasingly used in medicine and biotechnology as drug delivery systems, bioimaging agents or biosensors in the monitoring of toxic substances, heavy metals and environmental variations. Furthermore, in the food industry, they have found applications as detectors of food adulteration, microbial contamination and even in packaging for monitoring product freshness. Carbon dots (CDs) as materials with broad as well as unprecedented possibilities could revolutionize the economy, if only their synthesis was based on low-cost natural sources. So far, a number of studies point to the positive possibilities of obtaining CDs from natural sources. This review describes the types of carbon dots and the most important methods of obtaining them. It also focuses on presenting the potential application of carbon dots in biotechnology and food technology.
Collapse
Affiliation(s)
- Joanna Szczepankowska
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| |
Collapse
|
3
|
Lin L, Fang M, Liu W, Zheng M, Lin R. Recent advances and perspectives of functionalized carbon dots in bacteria sensing. Mikrochim Acta 2023; 190:363. [PMID: 37610450 DOI: 10.1007/s00604-023-05938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
Bacterial infectious diseases are severe threats to human health and increase substantial financial burdens. Nanomaterials have shown great potential in timely and accurate bacterial identification, detection, and monitoring to improve the cure rate and reduce mortality. Recently, carbon dots have been evidenced to be ideal candidates for bacterial identification and detection due to their superior physicochemical properties and biocompatibility. This review outlines the detailed recognition elements and recognition strategies with functionalized carbon dots (FCDs) for bacterial identification and detection. The advantages and limitations of different kinds of FCDs-based sensors will be critically discussed. Meanwhile, the ongoing challenges and perspectives of FCDs-based sensors for bacteria sensing are put forward.
Collapse
Affiliation(s)
- Liping Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Meng Fang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Rongguang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
4
|
Bera S, Mondal D. Antibacterial Efficacies of Nanostructured Aminoglycosides. ACS OMEGA 2022; 7:4724-4734. [PMID: 35187293 PMCID: PMC8851436 DOI: 10.1021/acsomega.1c04399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of broad-spectrum aminoglycoside antibiotics is restricted from various clinical applications due to the emergence of bacterial resistance and the adverse effects such as ototoxicity and nephrotoxicity. The intensive applicability of nanoparticles in modern medicinal chemistry has gained the interest of researchers for modification of aminoglycosides as nanoconjugates either via covalent conjugation or physical interactions to alleviate their undesirable effects and bacterial resistance. In this context, various carbohydrates, polymers, lipids, silver, gold, and silica-attached aminoglycoside nanoparticles have been reported with improvements in physicochemical properties, bioavailability, and biocompatibility in physiological medium. Overall, this review encompassed the synthesis of nanostructured aminoglycosides and their applications in the development of new antibacterial therapeutics.
Collapse
|
5
|
Advances in nanomaterial-based microfluidic platforms for on-site detection of foodborne bacteria. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116509] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Li Y, Xie S, Xu D, Shu G, Wang X. Antibacterial activity of ZnO quantum dots and its protective effects of chicks infected with Salmonella pullorum. NANOTECHNOLOGY 2021; 32:505104. [PMID: 34544049 DOI: 10.1088/1361-6528/ac2846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
In light of emerging antibiotic resistance, synthesis of active, environmental friendly antimicrobial alternatives becomes increasingly necessary. In this study, ZnO quantum dots (ZnO QDs) were developed by the sol-gel method and characterized. The antibacterial activities of ZnO QDs againstEscherichia coli(E. coli),Staphylococcus aureus(S. aureus) andSalmonella Pullorum(S. Pullorum) were systematically investigated. Moreover, the protective effects of ZnO QDs on Salmonella-caused pullorosis in chicks were also explored. The results indicated that the size range of ZnO QDs was 3-6 nm. Antibacterial results showed that ZnO QDs treatment inhibited the growth ofE. coli,S. aureus, andS. Pullorumin the rate of 87.06 ± 0.98%, 94.75 ± 2.28%, and 85.55 ± 1.15%, respectively. Its excellent antibacterial property was manifested with the minimum inhibitory concentration of 0.7812, 0.0976, and 0.1953 mg ml-1, which may be attributed to the production of reactive oxygen species, the dissolution of Zn2+ions, and the loss of cell integrity. Furthermore, in thein vivotest, the ZnO QDs effectively reduced the mortality of chicks infected withS. Pullorumvia regulating the balance of the intestinal flora, protecting liver and intestine, and modulating the balance of antioxidation systems. This study reveals that ZnO QDs exerts remarkably antibacterial activityin vitroand anti-pullorosis effect in chicks.
Collapse
Affiliation(s)
- Yunchun Li
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Songtao Xie
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| |
Collapse
|
7
|
Arias Velasco V, Caicedo Chacón WD, Carvajal Soto AM, Ayala Valencia G, Granada Echeverri JC, Agudelo Henao AC. Carbon Quantum Dots Based on Carbohydrates as Nano Sensors for Food Quality and Safety. STARCH-STARKE 2021. [DOI: 10.1002/star.202100044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Valentina Arias Velasco
- Facultad de Ingeniería y Administración Universidad Nacional de Colombia sede Palmira Palmira AA 237 Colombia
| | - Wilson D. Caicedo Chacón
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040–900 Brazil
| | - Angélica M. Carvajal Soto
- Facultad de Ingeniería y Administración Universidad Nacional de Colombia sede Palmira Palmira AA 237 Colombia
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040–900 Brazil
| | - Juan C. Granada Echeverri
- Physics Department and Centre for Bioinformatics and Photonics CIBioFi, Universidad del Valle Cali AA 25360 Colombia
| | - Ana C. Agudelo Henao
- Facultad de Ingeniería y Administración Universidad Nacional de Colombia sede Palmira Palmira AA 237 Colombia
| |
Collapse
|
8
|
Li A, Jia J, Fan Y, Chen H, Wang S, Shen C, Dai H, Zhou C, Fu H, She Y. Furfural and organic acid targeted carbon dot sensor array for the accurate identification of Chinese baijiu. J Food Sci 2021; 86:2924-2938. [PMID: 34146402 DOI: 10.1111/1750-3841.15766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Baijiu quality control has always been a major challenge for researchers. In this paper, taking furfural which is closely related to baijiu brewing process and organic acids related to baijiu fermentation process and microorganism types as the main discriminating factors, a carbon dot (CDs) sensor array targeting furfural and organic acids was constructed to identify 41 kinds of baijiu. Through the fluorescence response investigation of CDs synthesized by isomers of benzenediol, aminophenol, and phenylenediamine to different baijiu, two CDs synthesized by meta-benzene substitutions containing -NH2 were selected to build a fluorescence sensor array. Due to the aggregation-induced enhancement effect between furfural and the CDs, and the protonation of organic acid and the CDs, different fluorescence changes were observed, the sensor array combined with partial least squares regression could quantitatively analyze furfural and organic acids. What is more, semi-quantitative analysis of furfural and lactic acid in baijiu was performed. Owing to the interaction of the two CDs with furfural and organic acids in baijiu, the sensor array could accurately identify different baijiu through linear discriminant analysis. This sensor array has potential applications in the quantitative analysis of flavor substances in other alcoholic beverages, moreover, this method could provide a quick response and practical tool for real-time quality control monitoring in the baijiu industry.
Collapse
Affiliation(s)
- Ailan Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Junjie Jia
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Yao Fan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China
| | - Songtao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co. Ltd., Luzhou, PR China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co. Ltd., Luzhou, PR China
| | - Hupiao Dai
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Chunsong Zhou
- International Environmental Protection City Technology Limited Company (IEPCT), Yixing, PR China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| |
Collapse
|
9
|
Cheng Y, Ling SD, Geng Y, Wang Y, Xu J. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. NANOSCALE ADVANCES 2021; 3:2180-2195. [PMID: 36133767 PMCID: PMC9417800 DOI: 10.1039/d0na00933d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/13/2021] [Indexed: 05/17/2023]
Abstract
Bio-sensing and bio-imaging of organisms or molecules can provide key information for the study of physiological processes or the diagnosis of diseases. Quantum dots (QDs) stand out to be promising optical detectors because of their excellent optical properties such as high brightness, stability, and multiplexing ability. Diverse approaches have been developed to generate QDs, while microfluidic technology is one promising path for their industrial production. In fact, microfluidic devices provide a controllable, rapid and effective route to produce high-quality QDs, while serving as an effective in situ platform to understand the synthetic mechanism or optimize reaction parameters for QD production. In this review, the recent research progress in microfluidic synthesis and bio-detection applications of QDs is discussed. The definitions of different QDs are first introduced, and the advances in microfluidic-based fabrication of quantum dots are summarized with a focus on perovskite QDs and carbon QDs. In addition, QD-based bio-sensing and bio-imaging technologies for organisms of different scales are described in detail. Finally, perspectives for future development of microfluidic synthesis and applications of QDs are presented.
Collapse
Affiliation(s)
- Yu Cheng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Si Da Ling
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuhao Geng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yundong Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Jianhong Xu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
10
|
|
11
|
Fluorescent carbon quantum dots from Ananas comosus waste peels: A promising material for NLO behaviour, antibacterial, and antioxidant activities. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Pathak A, Venugopal P, Nair BG, Suneesh PV, Satheesh Babu T. Facile pH-sensitive optical detection of pathogenic bacteria and cell imaging using multi-emissive nitrogen-doped carbon dots. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Bruce JA, Clapper JC. Conjugation of Carboxylated Graphene Quantum Dots with Cecropin P1 for Bacterial Biosensing Applications. ACS OMEGA 2020; 5:26583-26591. [PMID: 33110986 PMCID: PMC7581262 DOI: 10.1021/acsomega.0c03342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/25/2020] [Indexed: 05/03/2023]
Abstract
Biosensors that can accurately and rapidly detect bacterial concentrations in solution are important for potential applications such as assessing drinking water safety. Meanwhile, quantum dots have proven to be strong candidates for biosensing applications in recent years because of their strong light emission properties and their ability to be modified with a variety of functional groups for the detection of different analytes. Here, we investigate the use of conjugated carboxylated graphene quantum dots (CGQDs) for the detection of Escherichia coli using a biosensing assay that focuses on measuring changes in fluorescence intensity. We have further developed this assay into a novel, compact, field-deployable biosensor focused on rapidly measuring changes in absorbance to determine E. coli concentrations. Our CGQDs were conjugated with cecropin P1, a naturally produced antibacterial peptide that facilitates the attachment of CGQDs to E. coli cells; to our knowledge, this is the first instance of cecropin P1 being used as a biorecognition element for quantum dot biosensors. As such, we confirm the structural modification of these conjugated CGQDs in addition to analyzing their optical characteristics. Our findings have the potential to be used in situations where rapid, reliable detection of bacteria in liquids, such as drinking water, is required, especially given the low range of E. coli concentrations (103 to 106 CFU/mL) within which our two biosensing assays have collectively been shown to function.
Collapse
Affiliation(s)
- Jonathan A. Bruce
- Taipei American School, 800 Chung Shan North Road, Section
6, Taipei 11152, Taiwan
| | - Jude C. Clapper
- Taipei American School, 800 Chung Shan North Road, Section
6, Taipei 11152, Taiwan
| |
Collapse
|
14
|
Anand A, Manavalan G, Mandal RP, Chang HT, Chiou YR, Huang CC. Carbon Dots for Bacterial Detection and Antibacterial Applications-A Minireview. Curr Pharm Des 2020; 25:4848-4860. [DOI: 10.2174/1381612825666191216150948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022]
Abstract
:
The prevention and treatment of various infections caused by microbes through antibiotics are becoming
less effective due to antimicrobial resistance. Researches are focused on antimicrobial nanomaterials to inhibit
bacterial growth and destroy the cells, to replace conventional antibiotics. Recently, carbon dots (C-Dots) become
attractive candidates for a wide range of applications, including the detection and treatment of pathogens. In addition
to low toxicity, ease of synthesis and functionalization, and high biocompatibility, C-Dots show excellent
optical properties such as multi-emission, high brightness, and photostability. C-Dots have shown great potential
in various fields, such as biosensing, nanomedicine, photo-catalysis, and bioimaging. This review focuses on the
origin and synthesis of various C-Dots with special emphasis on bacterial detection, the antibacterial effect of CDots,
and their mechanism.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Gopinathan Manavalan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ru Chiou
- Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
15
|
Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Yang Q, Farooq U, Chen W, Ullah MW, Wang S. Fluorimetric Detection of Single Pathogenic Bacterium in Milk and Sewage Water Using pH-Sensitive Fluorescent Carbon Dots and MALDI-TOF MS. Microorganisms 2019; 8:E53. [PMID: 31888104 PMCID: PMC7022441 DOI: 10.3390/microorganisms8010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022] Open
Abstract
The current study is focused on the application of water-soluble, fluorescent, and pH-sensitive carbon dots (CDs) as a nanoprobe for sensitive detection of pathogenic bacteria in milk and sewage water. The CDs were facilely synthesized through the controlled carbonization of sucrose using sulfuric acid and characterized through XRD, FTIR, TEM, UV-Vis Spectroscopy, and fluorescent analysis. The as-synthesized CDs were highly water-soluble, stable, and pH-sensitive fluorescent nanomaterials. The pH-related fluorescence study showed that the ratio of fluorescence intensity (Log[IF410/IF350]) changed linearly in the pH range between 4.9 and 6.9 in the Britton-Robison buffer. By determining the pH variation of the growth medium caused by the released acidic metabolites, the CDs-based ratiometric nanoprobe and MALDI-TOF mass spectrometry (MS) were used for the detection and identification of Escherichia coli O157:H7, respectively. The practical applicability of the pH-sensitive fluorescent CDs-based ratiometric nanoprobe was evaluated to detect Escherichia coli O157:H7 in real samples, i.e., milk and sewage water using agar count plate method with a limit of detection (LOD) up to 1 colony-forming unit per mL (CFU/mL).
Collapse
Affiliation(s)
- Qiaoli Yang
- Advanced Biomaterials & Tissue Engineering Centre, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.Y.); (U.F.)
| | - Umer Farooq
- Advanced Biomaterials & Tissue Engineering Centre, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.Y.); (U.F.)
| | - Wei Chen
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China (M.W.U.)
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China (M.W.U.)
| | - Shenqi Wang
- Advanced Biomaterials & Tissue Engineering Centre, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.Y.); (U.F.)
| |
Collapse
|
17
|
Microwave-Assisted Synthesis of Amikacin Modified N,S co-Doped Carbon Dots for Escherichia coli Detection. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fluorescent amikacin modified nitrogen, sulfur co-doped carbon dots (amikacin modified N,S-CDs) were synthesized by a facile and low-cost one-step microwave-assisted specifically for selective detection of Gram-negative bacteria Escherichia coli (E. coli). Amikacin is a semi-synthetic amino glycoside antibiotic and it was employed in this study to increase the fluorescence response of N,S-CDs by providing binding ligand towards E. coli. The effect of thiourea content as the source of nitrogen and sulfur dopants was investigated prior to the preparation of amikacin modified N,S-CDs. The formation of amikacin modified N,S-CDs were characterized by using Fourier transform infrared (FTIR), X-ray diffraction (XRD), Transmission electron microscope (TEM), UV-Vis spectrophotometer, and spectrofluorometer. Amikacin modified N,S-CDs was identified to be successfully synthesized from the wavenumber shift of the C=O stretching mode. Amikacin modified N,S-CDs were amorphous with an average size of 7 nm. Fluorescence spectra showed that the highest intensity was obtained at thiourea content of 50% and amikacin mass of 25 mg. By comparing fluorescence responses of all the investigated amikacin modified N,S-CDs, the limit of detection (LOD) was attained by 25 mg amikacin modified N,S-CDs at 1.526 cfu mL−1.
Collapse
|
18
|
Jelinkova P, Mazumdar A, Sur VP, Kociova S, Dolezelikova K, Jimenez AMJ, Koudelkova Z, Mishra PK, Smerkova K, Heger Z, Vaculovicova M, Moulick A, Adam V. Nanoparticle-drug conjugates treating bacterial infections. J Control Release 2019; 307:166-185. [DOI: 10.1016/j.jconrel.2019.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
|
19
|
Abstract
Carbon dots (or carbon quantum dots) are small (less than 10 nm) and luminescent carbon nanoparticles with some form of surface passivation. As an emerging class of nanomaterials, carbon dots have found wide applications in medicine, bioimaging, sensing, electronic devices, and catalysis. In this review, we focus on the recent advancements of carbon dots for sensing and killing microorganisms, including bacteria, fungi, and viruses. Synthesis, functionalization, and a toxicity profile of these carbon dots are presented. We also discuss the underlying mechanisms of carbon dot-based sensing and killing of microorganisms.
Collapse
|
20
|
Shi X, Wei W, Fu Z, Gao W, Zhang C, Zhao Q, Deng F, Lu X. Review on carbon dots in food safety applications. Talanta 2019; 194:809-821. [DOI: 10.1016/j.talanta.2018.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/24/2018] [Accepted: 11/04/2018] [Indexed: 12/15/2022]
|
21
|
Kumari R, Kumar Sahu S. Synthesis of Longer‐Wavelength‐Emissive Carbon Quantum Dots for WLEDs and Investigation of Their Photoluminescence Properties. ChemistrySelect 2018. [DOI: 10.1002/slct.201802637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rinki Kumari
- Department of Applied ChemistryIndian Institute of Technology (ISM) Dhanbad 826004, Jharkhand India
| | - Sumanta Kumar Sahu
- Department of Applied ChemistryIndian Institute of Technology (ISM) Dhanbad 826004, Jharkhand India
| |
Collapse
|
22
|
Uddin I. Mechanistic approach to study conjugation of nanoparticles for biomedical applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 202:238-243. [PMID: 29793145 DOI: 10.1016/j.saa.2018.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Interaction of nanoparticles with biological systems turns out to be vibrant for their efficient application in biomedical field. Here, we have shown antibiotic amakicin loaded nanoparticles are responsible for the dual role as reducing and stabilizing the silver nanoparticles without the use of any undesired chemicals. Synthesized nanoparticles are well-dispersed having quasi spherical morphology with an average particle size around 10-11 nm. Crystallinity of nanoparticles was measured using selected area electron diffraction (SAED) and powder XRD analysis which show that particles are perfectly crystalline with cubic phase of geometry. UV-Vis, FTIR and circular dichroism (CD) analysis explained the presence and interaction of antibiotic on the nanoparticle's surface. Amakicin functionalized Ag nanoparticles used in this study have shown enhanced antibacterial activity against E. coli. These studies will help in designing an in-depth understanding that how nanostructures can possibly interact with biological systems.
Collapse
Affiliation(s)
- Imran Uddin
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
23
|
Chandra S, Chowdhuri AR, Laha D, Sahu SK. Fabrication of nitrogen- and phosphorous-doped carbon dots by the pyrolysis method for iodide and iron(III) sensing. LUMINESCENCE 2017; 33:336-344. [DOI: 10.1002/bio.3418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Soumen Chandra
- Department of Applied Chemistry; Indian Institute of Technology (ISM); Dhanbad Jharkhand India
| | - Angshuman Ray Chowdhuri
- Department of Applied Chemistry; Indian Institute of Technology (ISM); Dhanbad Jharkhand India
| | - Dipranjan Laha
- Department of Life Science and Biotechnology; Jadavpur University; Kolkata India
| | - Sumanta Kumar Sahu
- Department of Applied Chemistry; Indian Institute of Technology (ISM); Dhanbad Jharkhand India
| |
Collapse
|
24
|
Preparation of Carbon Dots and Their Application in Food Analysis as Signal Probe. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61045-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Wang Z, Long P, Feng Y, Qin C, Feng W. Surface passivation of carbon dots with ethylene glycol and their high-sensitivity to Fe3+. RSC Adv 2017. [DOI: 10.1039/c6ra25465a] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Surface passivation of carbon dots with ethylene glycol and their application in the field of Fe3+ detection.
Collapse
Affiliation(s)
- Zhaogan Wang
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Peng Long
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Yiyu Feng
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300072
- P. R. China
- Key Laboratory of Advanced Ceramics and Machining Technology
| | - Chengqun Qin
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Wei Feng
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300072
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|