1
|
Mobaleghol Eslam H, Hataminia F, Esmaeili F, Salami SA, Ghanbari H, Amani A. Preparation of a nanoemulsion containing active ingredients of cannabis extract and its application for glioblastoma: in vitro and in vivo studies. BMC Pharmacol Toxicol 2024; 25:73. [PMID: 39375818 PMCID: PMC11460059 DOI: 10.1186/s40360-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Recently, the anti-tumor effects of cannabis extract on various cancers have attracted the attention of researchers. Here, we report a nanoemulsion (NE) composition designed to enhance the delivery of two active components in cannabis extracts (∆9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD)) in an animal model of glioblastoma. The efficacy of the NE containing the two drugs (NED) was compared with the bulk drugs and carrier (NE without the drugs) using the C6 tumor model in rats. Hemocompatibility factors (RBC, MCV, MCH, MCHC, RDW, PPP, PT and PTT) were studied to determine the potential in vivo toxicity of NED. The optimized NED with mean ± SD diameter 29 ± 6 nm was obtained. It was shown that by administering the drugs in the form of NED, the hemocompatibility increased. Cytotoxicity studies indicated that the NE without the active components (i.e. mixture of surfactants and oil) was the most cytotoxic group, while the bulk group had no toxicity. From the in vivo MRI and survival studies, the NED group had maximum efficacy (with ~4 times smaller tumor volume on day 7 of treatment, compared with the control. Also, survival time of the control, bulk drug, NE and NED were 9, 4, 12.5 and 51 days, respectively) with no important adverse effects. In conclusion, the NE containing cannabis extract could be introduced as an effective treatment in reducing brain glioblastoma tumor progression.
Collapse
Affiliation(s)
- Houra Mobaleghol Eslam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hataminia
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Salami
- Department of Biotechnology, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
- Industrial and Medical Cannabis Research Institute (IMCRI), Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
2
|
Miretti M, Juri L, Peralta A, Cosiansi MC, Baumgartner MT, Tempesti TC. Photoinactivation of non-tuberculous mycobacteria using Zn-phthalocyanine loaded into liposomes. Tuberculosis (Edinb) 2022; 136:102247. [PMID: 35977438 DOI: 10.1016/j.tube.2022.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Non-tuberculous mycobacteria are a heterogeneous group of environmental bacteria and other than the well-known Mycobacterium tuberculosis complex and Mycobacterium leprae. They could cause localized or disseminated infections. Mycobacterium chelonae and Mycobacterium fortuitum are among the most clinically relevant non-tuberculous mycobacteria species. The infections treatment is complex since they are resistant to antituberculosis drugs and the biofilm formation makes them impermeable to several antibiotics. Antimicrobial photodynamic therapy (aPDT) constitutes an alternative to eliminate pathogens, principally those antimicrobials resistant. Among explored photosensitizers, phthalocyanines are considered excellent, but with a disadvantage: a lack solubility in aqueous media. Consequently, several nanocarriers have been studied in the last years. In this work, a Zn-phthalocyanine into liposomes was evaluated to photoinactivate M. fortuitum and M. chelonae. The results show a higher photodynamic activity of ZnPc into liposomes respect to solution. Furthermore, M. fortuitum was more sensible to aPDT than M. chelonae.
Collapse
Affiliation(s)
- Mariana Miretti
- INFIQC (CONICET), Dpto. de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria s/n, Córdoba, 5000, Córdoba, Argentina.
| | - Leticia Juri
- Laboratorio Regional de Tuberculosis, Hospital Transito Cáceres de Allende, Córdoba, 5000, Córdoba, Argentina
| | - Alejandra Peralta
- Laboratorio Regional de Tuberculosis, Hospital Transito Cáceres de Allende, Córdoba, 5000, Córdoba, Argentina
| | - María C Cosiansi
- Laboratorio Regional de Tuberculosis, Hospital Transito Cáceres de Allende, Córdoba, 5000, Córdoba, Argentina
| | - María T Baumgartner
- INFIQC (CONICET), Dpto. de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria s/n, Córdoba, 5000, Córdoba, Argentina
| | - Tomas C Tempesti
- INFIQC (CONICET), Dpto. de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria s/n, Córdoba, 5000, Córdoba, Argentina.
| |
Collapse
|
3
|
Ceron Jayme C, Rezende N, S Fernandes D, B de Paula L, Gimenes de Castro B, U Takahashi LA, Tedesco AC. Target selectivity of cholesterol-phosphatidylcholine liposome loaded with phthalocyanine for breast cancer diagnosis and treatment by photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 39:102992. [PMID: 35803557 DOI: 10.1016/j.pdpdt.2022.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
Abstract
This study investigated the ability of cholesterol-phosphatidylcholine liposomes loaded with chloride aluminum phthalocyanine (CL-AlClPc) to discriminate between healthy (MCF-10A) and neoplastic (MCF-7 and MDA-MB-231) breast cells for breast cancer diagnosis and treatment by photodynamic therapy (PDT) using a new drug delivery system consisting of CL-AlClPc. When PDT treatment was applied at an energy fluence of 700 mJ/cm², CL-AlClPc was more cytotoxic to neoplastic cells than to healthy breast cells because CL-AlClPc was better internalized by the tumor cells. An even higher fluorescence signal is expected for neoplastic cells during clinical treatment than for healthy cells, which will be useful for precise and targeted tumor cell detection. CL-AlClPc also facilitated better drug distribution and targeting of essential organelles inside the cells. This selectivity is critical for future in vivo diagnosis and treatment; it prevents side effects because it prioritizes tumor cells and tissues instead of healthy ones. The CL-AlClPc system designed herein had a small size (150 nm), low zeta potential (-6 mV), low polydispersity (0.16), high encapsulation rate efficiency (82.83%), and high shelf stability (12 months).
Collapse
Affiliation(s)
- Cristiano Ceron Jayme
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Nayara Rezende
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Daniela S Fernandes
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Leonardo B de Paula
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Bárbara Gimenes de Castro
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Luandra Aparecida U Takahashi
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
4
|
Pakdaman Goli P, Bikhof Torbati M, Parivar K, Akbarzadeh Khiavi A, Yousefi M. Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Tedesco AC, Silva EPO, Jayme CC, Piva HL, Franchi LP. Cholesterol-rich nanoemulsion (LDE) as a novel drug delivery system to diagnose, delineate, and treat human glioblastoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111984. [PMID: 33812612 DOI: 10.1016/j.msec.2021.111984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/26/2022]
Abstract
We have prepared and characterized a cholesterol-rich nanoemulsion called LDE, a mimic of classic lipoprotein macromolecules, that can be applied as a new drug delivery system for aluminum phthalocyanine chloride (PcAlCl). The LDE containing PcAlCl system prepared herein had mean size and zeta potential of 127 nm and -29 mV, respectively, and encapsulation rate efficiency was 81%, and stability of 17 months. Compared to classical liposomes, LDE was more efficient, especially in brain diseases like glioblastoma (GBM), as revealed by tests on the U-87 MG cell line. The LDEPc formulation did not display dark cytotoxicity, as expected. The best light dose for LDEPc was 1.0 J·cm-2: its activity was 55% higher than PcAlCl in a compatible organic medium. In the U-87 MG cells, apoptosis was the preferential pathway activated by PDT. These results strongly support the use of LDE as a new theranostic system.
Collapse
Affiliation(s)
- Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil.
| | - Emanoel P O Silva
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Cristiano C Jayme
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Henrique L Piva
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Leonardo P Franchi
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Campus Samambaia, Universidade Federal de Goiás (UFG), 74690-900 Goiânia, GO, Brazil
| |
Collapse
|
6
|
The redox function of apurinic/apyrimidinic endonuclease 1 as key modulator in photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:111992. [DOI: 10.1016/j.jphotobiol.2020.111992] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/04/2023]
|
7
|
Miretti M, Tempesti TC, Prucca CG, Baumgartner MT. Zn phthalocyanines loaded into liposomes: Characterization and enhanced performance of photodynamic activity on glioblastoma cells. Bioorg Med Chem 2020; 28:115355. [PMID: 32067893 DOI: 10.1016/j.bmc.2020.115355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/16/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) is considered a promising strategy for cancer treatment. PDT utilizes light in combination with a photosensitizer (PS) to induce several phototoxic reactions. Phthalocyanines (Pcs), a second generation of photosensitizers, have been studied in several cancer models. Among these, Pcs, have become of interest for the treatment of glioblastomas which are one of the most common and aggressive forms of tumors of the central nervous system. Due to the lipophilic nature of Pcs and their limited solubility in water, Pcs can be loaded in liposomes. In this work, we characterized liposomes of ZnPc and TAZnPc and their effectiveness to photoinactivate glioblastoma cells, was evaluated. Both Pcs show an increase in their photosensitizing activity when they were administrated in Dipalmitoylphosphatidylcholine-cholesterol liposomes compared to Pcs administrated in dimethylformamide.
Collapse
Affiliation(s)
- Mariana Miretti
- INFIQC (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Tomas C Tempesti
- INFIQC (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - César G Prucca
- CIQUIBIC (CONICET), Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria T Baumgartner
- INFIQC (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
8
|
Chen K, Li X, Yu X, Zhang T, Ye Q, Xiao W, Chen L, Huang B, Peng Y. Copper-cysteamine nanoparticles encapsulating fluorocoumarin silicon(IV) phthalocyanines: synthesis, characterization, and photophysical properties. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1703184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kuizhi Chen
- College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Xia Li
- College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Xinxin Yu
- College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Tiantian Zhang
- College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Qiuhao Ye
- College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Wenling Xiao
- College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Limin Chen
- Affiliate Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Baoquan Huang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, China
| | - Yiru Peng
- College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| |
Collapse
|
9
|
Nkanga CI, Krause RWM. Encapsulation of Isoniazid-conjugated Phthalocyanine-In-Cyclodextrin-In-Liposomes Using Heating Method. Sci Rep 2019; 9:11485. [PMID: 31391517 PMCID: PMC6685989 DOI: 10.1038/s41598-019-47991-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/26/2019] [Indexed: 12/27/2022] Open
Abstract
Liposomes are reputed colloidal vehicles that hold the promise for targeted delivery of anti-tubercular drugs (ATBDs) to alveolar macrophages that host Mycobacterium tuberculosis. However, the costly status of liposome technology, particularly due to the use of special manufacture equipment and expensive lipid materials, may preclude wider developments of therapeutic liposomes. In this study, we report efficient encapsulation of a complex system, consisting of isoniazid-hydrazone-phthalocyanine conjugate (Pc-INH) in gamma-cyclodextrin (γ-CD), in liposomes using crude soybean lecithin by means of a simple organic solvent-free method, heating method (HM). Inclusion complexation was performed in solution and solid-state, and evaluated using UV-Vis, magnetic circular dichroism, 1H NMR, diffusion ordered spectroscopy and FT-IR. The HM-liposomes afforded good encapsulation efficiency (71%) for such a large Pc-INH/γ-CD complex (PCD) system. The stability and properties of the PCD-HM-liposomes look encouraging; with particle size 240 nm and Zeta potential −57 mV that remained unchanged upon storage at 4 °C for 5 weeks. The release study performed in different pH media revealed controlled release profiles that went up to 100% at pH 4.4, from about 40% at pH 7.4. This makes PCD-liposomes a promising system for site-specific ATBD delivery, and a good example of simple liposomal encapsulation of large hydrophobic compounds.
Collapse
Affiliation(s)
- Christian Isalomboto Nkanga
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Rhodes University, PO Box 94, Grahamstown, 6140, Eastern Cape, South Africa
| | - Rui Werner Maçedo Krause
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Rhodes University, PO Box 94, Grahamstown, 6140, Eastern Cape, South Africa.
| |
Collapse
|
10
|
Aluminum phthalocyanine nanoparticles activation for local fluorescence spectroscopy in dentistry. BIOMEDICAL PHOTONICS 2018. [DOI: 10.24931/2413-9432-2018-7-3-4-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Early diagnosis of caries and tooth enamel microcracks is of great importance for preventing the destruction of healthy tooth enamel. Inorder to detect microcracks in the enamel and pathogenic microflora foci that can cause caries, nanoform of aluminum phthalocyanine (AlPc) can be used as a marker. In a colloidal solution, the nanoparticles do not fluoresce, unlike their molecular form. To convert the particle into its molecular form, it is necessary to have a solvent or specific environment (bacteria, macrophages, etc.). That is why the hydrophobic nanoparticles of aluminum phthalocyanine (nAlPc) can act as markers for detecting hidden pathogenic microflora during fluorescent diagnostics. Further reduction of the diagnosis time and increase the efficiency can be achieved by using biologically compatible surfactants as additional activators of nAlPc.In order to carry out local fluorescence spectroscopy of enamel microcracks and pathogenic microflora foci on the enamel surface, a model compound containing surfactants, auxiliary components and nAlPc colloid at a concentration of 10 mg/l was prepared.Studies on the interaction of the model compound with nAlPc and Protelan MST-35 with tooth enamel ex vivo have shown this surfactant to be a promising auxiliary activator of the nanoparticles, allowing conducting local fluorescence spectroscopy of the tooth enamel surface 3 min after application. In addition, statistical processing of the results showed the effectiveness of using the model compound for local fluorescence spectroscopy of the enamel surface in order to detect the enamel microcracks and the pathogenic microflora accumulation foci that can lead to the development of a cariogenic process.
Collapse
|
11
|
Nkanga CI, Krause RWM. Conjugation of isoniazid to a zinc phthalocyanine via hydrazone linkage for pH-dependent liposomal controlled release. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0776-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
de Lima RG, Tedesco AC, da Silva RS, Lawrence MJ. Ultradeformable liposome loaded with zinc phthalocyanine and [Ru(NH.NHq)(tpy)NO] 3+ for photodynamic therapy by topical application. Photodiagnosis Photodyn Ther 2017; 19:184-193. [PMID: 28578126 DOI: 10.1016/j.pdpdt.2017.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/16/2017] [Accepted: 05/18/2017] [Indexed: 01/25/2023]
Abstract
Ultradeformable liposomes (UDLs) as a drug delivery system (DDS), prepared from the unsaturated phospholipid, dioleylphosphocholine (DOPC), and containing the non-ionic surfactant Tween 20 as edge activator, have been explored as topical vehicles for zinc phthalocyanine (ZnPc) and the nitrosyl ruthenium complex [Ru(NH.NHq)(tpy)NO]3+ (RuNO) as a photosensitizers for co-generation of 1O2 and NO as reactive species, respectively. However, in order to ensure that ZnPc was present in the UDLs in its monomeric form - essential for maximal ZnPc photophysical properties - it was necessary to replace 40wt% of the DOPC with the saturated phospholipid, dimyristoylphosphocholine (DMPC). The resultant ZnPc and complex [Ru(NH.NHq)(tpy)NO]3+ containing UDLs were stable for at least a month when stored at 4°C, six times more elastic/deformable than conventional liposome (c-Ls), i.e. liposome prepared using the same weight ratio of lipids but in the absence of Tween 20, and to significantly enhance the in vitro permeation of ZnPc across fresh pig ear skin. The UDLs DDS incorporating ZnPc and [Ru(NH.NHq)(tpy)NO]3+ were toxic (by the MTT assay) towards B16-F10 melanoma cells when irradiated with visible light at 670nm, the maximum absorption of ZnPc, and at a dose of 3.18J/cm2, but not when applied in the absence of light as expected. Based on these results it is proposed that the novel topical UDLs formulation developed is a suitable delivery vehicle for photodynamic therapy.
Collapse
Affiliation(s)
- Renata Galvão de Lima
- Faculty of Sciences Integrated of Pontal, Federal University of Uberlândia, Brazil; Pharmaceutical Science Division, King's College London, Waterloo Campus, SE1 9NH, London, UK
| | - Antonio Cláudio Tedesco
- Departament of Chemistry, Laboratory of Photobiology and Photomedicine, Center of Nanotechnology and Tissue Engineer, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Margaret Jayne Lawrence
- Pharmaceutical Science Division, King's College London, Waterloo Campus, SE1 9NH, London, UK.
| |
Collapse
|
13
|
Leandro FZ, Martins J, Fontes AM, Tedesco AC. Evaluation of theranostic nanocarriers for near-infrared imaging and photodynamic therapy on human prostate cancer cells. Colloids Surf B Biointerfaces 2017; 154:341-349. [PMID: 28365423 DOI: 10.1016/j.colsurfb.2017.03.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/22/2017] [Accepted: 03/18/2017] [Indexed: 12/11/2022]
Abstract
This paper evaluates how effectively chloroaluminum phthalocyanine (ClAlPc) entrapped in colloidal nanocarriers, such as nanocapsule (NC) and nanoemulsion (NE), induces photodamage in human prostate cancer cells (LNCaP) during photodynamic therapy (PDT). The MTT cell viability assay showed that both ClAlPc-NC and ClAlPc-NE induced phototoxicity and efficiently killed LNCaP cells at low ClAlPc-NC and ClAlPc-NE concentrations (0.3μgmL-1) as well as under low light doses of 4Jcm-2 and 7Jcm-2, respectively, upon PDT with a 670-nm diode laser line. Confocal imaging studies indicated that ClAlPc-NC and ClAlPc-NE were preferentially localized in the perinuclear region of LNCaP cells both in the dark and upon irradiation with laser light. After PDT treatment, ClAlPc-NC-treated LNCaP cells exhibited a higher green fluorescence signal, possibly due to the larger shrinkage of the actin cytoskeleton, compared to ClAlPc-NE-treated LNCaP cells. Additionally, ClAlPc-NC or ClAlPc-NE and mitochondria showed a relatively high co-localization level. The cellular morphology did not change in the dark, but confocal micrographs recorded after PDT revealed that LNCaP cells treated with ClAlPc-NC or ClAlPc-NE underwent morphological alterations. Our preliminary in vitro studies reinforced the hypothesis that biocompatible theranostic ClAlPc-loaded nanocarriers could act as an attractive photosensitizer system in PDT and could serve as an interesting molecular probe for the early diagnosis of prostate cancer and other carcinomas.
Collapse
Affiliation(s)
- Fernanda Z Leandro
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Brazil
| | - Júlia Martins
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Brazil
| | - Aparecida M Fontes
- Centro Regional de Hemoterapia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Brazil.
| |
Collapse
|
14
|
de Paula LB, Primo FL, Pinto MR, Morais PC, Tedesco AC. Evaluation of a chloroaluminium phthalocyanine-loaded magnetic nanoemulsion as a drug delivery device to treat glioblastoma using hyperthermia and photodynamic therapy. RSC Adv 2017. [DOI: 10.1039/c6ra26105a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The study describes the development of magnetic nanoemulsion loaded with citrate-coated maghemite nanoparticles and photosensitizer and the in vitro studies using cell lines while combining the use of hyperthermia and photodynamic therapy therapies.
Collapse
Affiliation(s)
- L. B. de Paula
- Department of Chemistry
- Center of Nanotechnology and Tissue Engineering – Photobiology and Photomedicine Research Group
- Faculty of Philosophy
- Science and Letters of Ribeirão Preto
- University of São Paulo
| | - F. L. Primo
- São Paulo State University (UNESP)
- School of Pharmaceutical Sciences
- Brazil
| | - M. R. Pinto
- Department of Chemistry
- Laboratory of Enzymology
- Faculty of Philosophy
- Science and Letters of Ribeirão Preto
- University of São Paulo
| | - P. C. Morais
- Institute of Physics
- University of Brasilia
- 70910-900 Brasília
- Brazil
- College of Chemistry and Chemical Engineering
| | - A. C. Tedesco
- Department of Chemistry
- Center of Nanotechnology and Tissue Engineering – Photobiology and Photomedicine Research Group
- Faculty of Philosophy
- Science and Letters of Ribeirão Preto
- University of São Paulo
| |
Collapse
|