Flexible stretchable electrothermally/photothermally dual-driven heaters from nano-embedded hierarchical Cu
xS-Coated PET fabrics for all-weather wearable thermal management.
J Colloid Interface Sci 2022;
624:564-578. [PMID:
35690011 DOI:
10.1016/j.jcis.2022.05.159]
[Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022]
Abstract
The multifunctional photoelectronic devices are recently attracting much more attention due to their potential enlarged applications. The flexible stretchable electrothermally/photothermally dual-driven heaters for all-weather wearable thermal management are presented in this work with nano-embedded hierarchical CuxS-coated PET fabrics. Herein, the hierarchical nano-embedded CuxS film is fabricated via a simple chemical bath method for high electrical conductivity and highly efficient inelastic collision of electro/photo-generated carriers. The hierarchical nano-embedded CuxS morphology produces the low sheet resistance of 1.26 Ω sq-1 and the super low total heat transfer coefficient of 3.256 × 10-5 W/oC·mm2, which lead to the high-efficient electro/photo-dual-driven heating effect in the CuxS@PET fabrics. The saturated temperature on the as-fabricated flexible wearable heaters reaches up to 172 °C. The thermal conversion devices also bear the excellent stability, reproducibility, stretchability, controllability and corrosion-resistant characteristics. Interestingly, their excellent thermal conversion performance could be achieved by freely exchanging the driving power sources, such as electricity-supplying equipment, 635-nm laser, infrared physiotherapy lamp and solar simulator, which provides a necessary precondition for the all-weather applications of flexible wearable heaters. The as-fabricated electro/photo-dual-driven heaters on the CuxS@PET fabrics have the promising applications in wearable electronics, all-weather self-heating facilities, out/in-vivo physiotherapy, and so on.
Collapse