1
|
Peng HC, Castro GL, Karthikeyan V, Jarrett A, Katz MA, Hargrove JA, Hoang D, Hilber S, Meng W, Wang L, Fick RJ, Ahn JM, Kreutz C, Stelling AL. Measuring the Enthalpy of an Individual Hydrogen Bond in a DNA Duplex with Nucleobase Isotope Editing and Variable-Temperature Infrared Spectroscopy. J Phys Chem Lett 2023; 14:4313-4321. [PMID: 37130045 DOI: 10.1021/acs.jpclett.3c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The level of interest in probing the strength of noncovalent interactions in DNA duplexes is high, as these weak forces dictate the range of suprastructures the double helix adopts under different conditions, in turn directly impacting the biological functions and industrial applications of duplexes that require making and breaking them to access the genetic code. However, few experimental tools can measure these weak forces embedded within large biological suprastructures in the native solution environment. Here, we develop experimental methods for detecting the presence of a single noncovalent interaction [a hydrogen bond (H-bond)] within a large DNA duplex in solution and measure its formation enthalpy (ΔHf). We report that introduction of a H-bond into the TC2═O group from the noncanonical nucleobase 2-aminopurine produces an expected decrease ∼10 ± 0.76 cm-1 (from ∼1720 cm-1 in Watson-Crick to ∼1710 cm-1 in 2-aminopurine), which correlates with an enthalpy of ∼0.93 ± 0.066 kcal/mol for this interaction.
Collapse
Affiliation(s)
- Hao-Che Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Gabrielle L Castro
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Varshini Karthikeyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Alina Jarrett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Melanie A Katz
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - James A Hargrove
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - David Hoang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Wenting Meng
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Robert J Fick
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Allison L Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
2
|
Brovarets’ OO, Muradova A, Hovorun DM. Novel horizons of the conformationally-tautomeric transformations of the G·T base pairs: quantum-mechanical investigation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2026510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alona Muradova
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
3
|
Atomistic mechanisms of the tautomerization of the G·C base pairs through the proton transfer: quantum-chemical survey. J Mol Model 2021; 27:367. [PMID: 34855024 DOI: 10.1007/s00894-021-04988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
This study is devoted to the investigation of the G·C*tO2(WC)↔G*NH3·C*t(WC), G·C*O2(WC)↔G*NH3·C*(WC) and G*·C*O2(WC)↔G*NH3·C(wWC)↓ tautomerization reactions occurring through the proton transfer, obtained at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory in gas phase under normal conditions ('WC' means base pair in Watson-Crick configuration, T=298.15 K). These reactions lead to the formation of the G*NH3·C*t(WC), G*NH3·C*(WC) and G*NH3·C(wWC)↓ base pairs by the participation of the G*NH3 base with NH3 group. Gibbs free energies of activation for these reactions are 6.43, 11.00 and 1.63 kcal·mol-1, respectively. All of these tautomerization reactions are dipole active. Finally, we believe that these non-dissociative processes, which are tightly connected with the tautomeric transformations of the G·C base pairs, play an outstanding role in supporting of the spatial structure of the DNA and RNA molecules with various functional purposes.
Collapse
|
4
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
5
|
Brovarets’ OO, Hovorun DM. Intramolecular tautomerization of the quercetin molecule due to the proton transfer: QM computational study. PLoS One 2019; 14:e0224762. [PMID: 31751372 PMCID: PMC6874073 DOI: 10.1371/journal.pone.0224762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/20/2019] [Indexed: 12/21/2022] Open
Abstract
Quercetin molecule (3, 3', 4', 5, 7-pentahydroxyflavone, C15H10O7) is an important flavonoid compound of natural origin, consisting of two aromatic A and B rings linked through the C ring with endocyclic oxygen atom and five hydroxyl groups attached to the 3, 3', 4', 5 and 7 positions. This molecule is found in many foods and plants, and is known to have a wide range of therapeutic properties, like an anti-oxidant, anti-toxic, anti-inflammatory etc. In this study for the first time we have revealed and investigated the pathways of the tautomeric transformations for the most stable conformers of the isolated quercetin molecule (Brovarets' & Hovorun, 2019) via the intramolecular proton transfer. Energetic, structural, dynamical and polar characteristics of these transitions, in particular relative Gibbs free and electronic energies, characteristics of the intramolecular specific interactions-H-bonds and attractive van der Waals contacts, have been analysed in details. It was demonstrated that the most probable process among all investigated is the proton transfer from the O3H hydroxyl group of the C ring to the C2' carbon atom of the C2'H group of the B ring along the intramolecular O3H…C2' H-bond with the further formation of the C2'H2 group. It was established that the proton transfer from the hydroxyl groups to the carbon atoms of the neighboring CH groups is assisted at the transition states by the strong intramolecular HCH…O H-bond (~28.5 kcal∙mol-1). The least probable path of the proton transfer-from the C8H group to the endocyclic O1 oxygen atom-causes the decyclization of the C ring in some cases. It is shortly discussed the biological importance of the obtained results.
Collapse
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
6
|
Brovarets' OO, Oliynyk TA, Hovorun DM. Novel Tautomerisation Mechanisms of the Biologically Important Conformers of the Reverse Löwdin, Hoogsteen, and Reverse Hoogsteen G *·C * DNA Base Pairs via Proton Transfer: A Quantum-Mechanical Survey. Front Chem 2019; 7:597. [PMID: 31620420 PMCID: PMC6759773 DOI: 10.3389/fchem.2019.00597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/12/2019] [Indexed: 11/22/2022] Open
Abstract
For the first time, in this study with the use of QM/QTAIM methods we have exhaustively investigated the tautomerization of the biologically-important conformers of the G*·C* DNA base pair-reverse Löwdin G*·C*(rWC), Hoogsteen G*'·C*(H), and reverse Hoogsteen G*'·C*(rH) DNA base pairs-via the single (SPT) or double (DPT) proton transfer along the neighboring intermolecular H-bonds. These tautomeric reactions finally lead to the formation of the novel G· C O 2 * (rWC), G N 2 * · C(rWC), G*'N2·C(rWC), G N 7 * · C(H), and G*'N7·C(rH) DNA base mispairs. Gibbs free energies of activation for these reactions are within the range 3.64-31.65 kcal·mol-1 in vacuum under normal conditions. All TSs are planar structures (Cs symmetry) with a single exception-the essentially non-planar transition state TSG*·C*(rWC)↔G+·C-(rWC) (C1 symmetry). Analysis of the kinetic parameters of the considered tautomerization reactions indicates that in reality only the reverse Hoogsteen G*'·C*(rH) base pair undergoes tautomerization. However, the population of its tautomerised state G*'N7·C(rH) amounts to an insignificant value-2.3·10-17. So, the G*·C*(rWC), G*'·C*(H), and G*'·C*(rH) base pairs possess a permanent tautomeric status, which does not depend on proton mobility along the neighboring H-bonds. The investigated tautomerization processes were analyzed in details by applying the author's unique methodology-sweeps of the main physical and chemical parameters along the intrinsic reaction coordinate (IRC). In general, the obtained data demonstrate the tautomeric mobility and diversity of the G*·C* DNA base pair.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pharmacology, Bohomolets National Medical University, Kyiv, Ukraine
| | - Timothy A. Oliynyk
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Pathophysiology, Bohomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
7
|
Brovarets’ OO, Hovorun DM. Conformational diversity of the quercetin molecule: a quantum-chemical view. J Biomol Struct Dyn 2019; 38:2817-2836. [DOI: 10.1080/07391102.2019.1656671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
8
|
Brovarets’ OO, Hovorun DM. Conformational transitions of the quercetin molecule via the rotations of its rings: a comprehensive theoretical study. J Biomol Struct Dyn 2019; 38:2865-2883. [DOI: 10.1080/07391102.2019.1645734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pharmacology, Bohomolets National Medical University, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Pathophysiology, Bohomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
9
|
Synthesis, structural and biological activity of N-substituted 2-methyl-4-/5-nitroimidazole derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Böhnke H, Röttger K, Ingle RA, Marroux HJB, Bohnsack M, Schwalb NK, Orr-Ewing AJ, Temps F. Electronic Relaxation Dynamics of UV-Photoexcited 2-Aminopurine-Thymine Base Pairs in Watson-Crick and Hoogsteen Conformations. J Phys Chem B 2019; 123:2904-2914. [PMID: 30875228 DOI: 10.1021/acs.jpcb.9b02361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fluorescent analogue 2-aminopurine (2AP) of the canonical nucleobase adenine (6-aminopurine) base-pairs with thymine (T) without disrupting the helical structure of DNA. It therefore finds frequent use in molecular biology for probing DNA and RNA structures and conformational dynamics. However, detailed understanding of the processes responsible for fluorescence quenching remains largely elusive on a fundamental level. Although attempts have been made to ascribe decreased excited-state lifetimes to intrastrand charge-transfer and stacking interactions, possible influences from dynamic interstrand H-bonding have been widely ignored. Here, we investigate the electronic relaxation of UV-excited 2AP·T in Watson-Crick (WC) and Hoogsteen (HS) conformations. Although the WC conformation features slowed-down, monomer-like electronic relaxation in τ ∼ 1.6 ns toward ground-state recovery and triplet formation, the dynamics associated with 2AP·T in the HS motif exhibit faster deactivation in τ ∼ 70 ps. As recent research has revealed abundant transient interstrand H-bonding in the Hoogsteen motif for duplex DNA, the established model for dynamic fluorescence quenching may need to be revised in the light of our results. The underlying supramolecular photophysical mechanisms are discussed in terms of a proposed excited-state double-proton transfer as an efficient deactivation channel for recovery of the HS species in the electronic ground state.
Collapse
Affiliation(s)
- Hendrik Böhnke
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany
| | - Katharina Röttger
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany.,School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Rebecca A Ingle
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Hugo J B Marroux
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Mats Bohnsack
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany
| | - Nina K Schwalb
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany
| | - Andrew J Orr-Ewing
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Friedrich Temps
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany
| |
Collapse
|
11
|
Brovarets’ OO, Hovorun DM. Key microstructural mechanisms of the 2-aminopurine mutagenicity: Results of extensive quantum-chemical research. J Biomol Struct Dyn 2019; 37:2716-2732. [DOI: 10.1080/07391102.2018.1495577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| |
Collapse
|
12
|
Brovarets' OO, Tsiupa KS, Dinets A, Hovorun DM. Unexpected Routes of the Mutagenic Tautomerization of the T Nucleobase in the Classical A·T DNA Base Pairs: A QM/QTAIM Comprehensive View. Front Chem 2018; 6:532. [PMID: 30538979 PMCID: PMC6277528 DOI: 10.3389/fchem.2018.00532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/12/2018] [Indexed: 01/24/2023] Open
Abstract
In this paper using quantum-mechanical (QM) calculations in combination with Bader's quantum theory of "Atoms in Molecules" (QTAIM) in the continuum with ε = 1, we have theoretically demonstrated for the first time that revealed recently highly-energetic conformers of the classical A·T DNA base pairs - Watson-Crick [A·T(wWC)], reverse Watson-Crick [A·T(wrWC)], Hoogsteen [A·T(wH)] and reverse Hoogsteen [A·T(wrH)] - act as intermediates of the intrapair mutagenic tautomerization of the T nucleobase owing to the novel tautomerisation pathways: A·T(wWC)↔A·T*(w⊥ WC); A·T(wrWC)↔A·T O 2 * (w⊥ rWC); A·T(wH)↔A·T*(w⊥ H); A·T(wrH)↔A·T O 2 * (w⊥ rH). All of them occur via the transition states as tight ion pairs (A+, protonated by the N6H2 amino group)·(T-, deprotonated by the N3H group) with quasi-orthogonal geometry, which are stabilized by the participation of the strong (A)N6+H···O4-/O2-(T) and (A)N6+H···N3-(T) H-bonds. Established tautomerizations proceed through a two-step mechanism of the protons moving in the opposite directions along the intermolecular H-bonds. Initially, proton moves from the N3H imino group of T to the N6H2 amino group of A and then subsequently from the protonated N6+H3 amino group of A to the O4/O2 oxygen atom of T, leading to the products - A·T*(w⊥ WC), A·T O 2 * (w⊥ rWC), A·T*(w⊥ H), and A·T O 2 * (w⊥ rH), which are substantially non-planar, conformationally-labile complexes. These mispairs are stabilized by the participation of the (A)N6H/N6H'···N3(T) and (T)O2H/O4H···N6(A) H-bonds, for which the pyramidalized amino group of A is their donor and acceptor. The Gibbs free energy of activation of these mutagenic tautomerizations lies in the range of 27.8-29.8 kcal·mol-1 at T = 298.15 K in the continuum with ε = 1.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pharmacology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Andrii Dinets
- Department of Surgery #4, Bogomolets National Medical University, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pathophysiology, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
13
|
Brovarets’ OO, Tsiupa KS, Hovorun DM. Novel pathway for mutagenic tautomerization of classical А∙Т DNA base pairs via sequential proton transfer through quasi-orthogonal transition states: A QM/QTAIM investigation. PLoS One 2018; 13:e0199044. [PMID: 29949602 PMCID: PMC6021055 DOI: 10.1371/journal.pone.0199044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
In this paper we have theoretically predicted a novel pathway for the mutagenic tautomerization of the classical A∙T DNA base pairs in the free state, the Watson-Crick A·Т(WC), reverse Watson-Crick A·Т(rWC), Hoogsteen A·Т(H) and reverse Hoogsteen A·Т(rH) pairs, via sequential proton transfer accompanied by a significant change in the mutual orientation of the bases. Quantum-mechanical (QM) calculations were performed at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level in vacuum phase, along with Bader's quantum theory of Atoms in Molecules (QTAIM). These processes involve transition states (TSs) with quasi-orthogonal structures (symmetry C1), which are highly polar, tight ion pairs (A-, N6H2-deprotonated)∙(T+, O4/O2-protonated). Gibbs free energies of activation for the A∙T(WC) / A∙T(rWC) ↔ A*∙Т(rwWC) / A*∙Т(wWC) tautomeric transitions (~43.5 kcal∙mol-1) are lower than for the A∙T(H) / A∙T(rH) ↔ A*N7∙Т(rwH) / A*N7∙Т(wH) tautomerisations (~53.0 kcal∙mol-1) (rare tautomers are marked by an asterisk; w-wobble configured tautomerisation products). The (T)N3+H⋯N1-(A), (T)O4+H⋯N1-(A) / (T)N3+H⋯N1-(A) and (T)O2+H⋯N1-(A) H-bonds are found in the transition states TSA-·T+A·T(WC)↔A*·T(rwWC) / TSA-·T+A·T(rWC)↔A*·T(wWC). However, in the transition state TSA-·T+A·Т(H)↔A*N7·T(rwH) / TSA-·T+A·Т(rH)↔A*N7·T(wH), the (T)N3+H⋯N7-(A), (T)O4+H⋯N7-(A) / (T)N3+H⋯N7-(A) and (T)O2+H⋯N7-(A) H-bonds are supplemented by the attractive (T)O4+/O2+⋯N6-(A) van der Waals contacts. It was demonstrated that the products of the tautomerization of the classical A∙T DNA base pairs-A*∙Т(rwWC), A*N7∙Т(rwH) and A*N7∙Т(wH) (symmetry Cs)-further transform via double proton transfer into the energetically favorable wobble A∙T*(rwWC), A∙T*(rwH) and A∙T*O2(wH) base mispairs (symmetry Cs).
Collapse
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
14
|
Brovarets’ OO, Hovorun DM. Atomistic mechanisms of the double proton transfer in the H-bonded nucleobase pairs: QM/QTAIM computational lessons. J Biomol Struct Dyn 2018; 37:1880-1907. [DOI: 10.1080/07391102.2018.1467795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv, Ukraine
| |
Collapse
|
15
|
Brovarets' OO, Tsiupa KS, Hovorun DM. Surprising Conformers of the Biologically Important A·T DNA Base Pairs: QM/QTAIM Proofs. Front Chem 2018; 6:8. [PMID: 29536003 PMCID: PMC5835050 DOI: 10.3389/fchem.2018.00008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
For the first time novel high-energy conformers-A·T(wWC) (5.36), A·T(wrWC) (5.97), A·T(wH) (5.78), and A·T(wrH) (ΔG = 5.82 kcal·mol-1) (See Graphical Abstract) were revealed for each of the four biologically important A·T DNA base pairs - Watson-Crick A·T(WC), reverse Watson-Crick A·T(rWC), Hoogsteen A·T(H) and reverse Hoogsteen A·T(rH) at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of quantum-mechanical theory in the continuum with ε = 4 under normal conditions. Each of these conformers possesses substantially non-planar wobble (w) structure and is stabilized by the participation of the two anti-parallel N6H/N6H'…O4/O2 and N3H…N6 H-bonds, involving the pyramidalized amino group of the A DNA base as an acceptor and a donor of the H-bonding. The transition states - TSA·T(WC)↔A·T(wWC), TSA·T(rWC)↔A·T(wrWC), TSA·T(H)↔A·T(wH), and TSA·T(rH)↔A·T(wrH), controlling the dipole-active transformations of the conformers from the main plane-symmetric state into the high-energy, significantly non-planar state and vice versa, were localized. They also possess wobble structures similarly to the high-energy conformers and are stabilized by the participation of the N6H/N6H'…O4/O2 and N3H…N6 H-bonds. Discovered conformers of the A·T DNA base pairs are dynamically stable short-lived structures [lifetime τ = (1.4-3.9) ps]. Their possible biological significance and future perspectives have been briefly discussed.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
16
|
Brovarets' OO, Voiteshenko IS, Hovorun DM. Physico-chemical profiles of the wobble ↔ Watson-Crick G*·2AP(w) ↔ G·2AP(WC) and A·2AP(w) ↔ A*·2AP(WC) tautomerisations: a QM/QTAIM comprehensive survey. Phys Chem Chem Phys 2018; 20:623-636. [PMID: 29227488 DOI: 10.1039/c7cp05139e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study is intended to clarify in detail the tautomeric transformations of the wobble (w) G*·2AP(w) and A·2AP(w) nucleobase mispairs involving 2-aminopurine (2AP) into the Watson-Crick (WC) G·2AP(WC) and A*·2AP(WC) base mispairs (asterisks denote mutagenic tautomers of the DNA bases), respectively, by quantum-mechanical methods and Bader's Quantum Theory of Atoms in Molecules. Our previously reported methodology has been used, which allows the evolution of the physico-chemical parameters to be tracked along the entire internal reaction coordinate (IRC), not exclusively in the stationary states of these reactions. These biologically important G*·2AP(w) ↔ G·2AP(WC) and A·2AP(w) ↔ A*·2AP(WC) w ↔ WC tautomerisations, which are involved in mutagenic tautomerically-conformational pathways, determine the origin of the transitions and transversions induced by 2AP. In addition, it is established that they proceed through planar, highly stable, zwitterionic transition states and they exhibit similar physico-chemical profiles and stages of sequential intrapair proton transfer, followed by spatial rearrangement of the nucleobases relative to each other within the base pairs. These w ↔ WC tautomerisations occur non-dissociatively and are accompanied by a significant alteration in geometry (from wobble to Watson-Crick and vice versa) and redistribution of the specific intermolecular interactions, which can be divided into 10 patterns including AHB H-bonds and loosened A-H-B covalent bridges along the IRC of tautomerisation. Based on the redistribution of the geometrical and electron-topological parameters of the intrapair hydrogen bonds, exactly 9 key points have been allocated to characterize the evolution of these reactions.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine.
| | | | | |
Collapse
|
17
|
Brovarets' OO, Tsiupa KS, Hovorun DM. The A·T(rWC)/A·T(H)/A·T(rH) ↔ A·T*(rwWC)/A·T*(wH)/A·T*(rwH) mutagenic tautomerization via sequential proton transfer: a QM/QTAIM study. RSC Adv 2018; 8:13433-13445. [PMID: 35542561 PMCID: PMC9079753 DOI: 10.1039/c8ra01446a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022] Open
Abstract
In this study for the first time we have revealed by QM and QTAIM calculations at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of QM theory the novel routes of the mutagenic tautomerization of three biologically important A·T DNA base pairs – reverse Watson–Crick A·T(rWC), Hoogsteen A·T(H) and reverse Hoogsteen A·T(rH) – followed by their rebuilding into the wobble (w) A·T*(rwWC), A·T*(wH) and A·T*(rwH) base mispairs by the participation of the mutagenic tautomers of the DNA bases (denoted by asterisk) and vice versa, thus complementing the physico-chemical property of the canonical A·T(WC) Watson–Crick DNA base pair reported earlier (Brovarets' et al., RSC Adv., 2015, 5, 99594–99605). These non-dissociative tautomeric transformations in the classical A·T(rWC), A·T(H) and A·T(rH) DNA base pairs proceed similarly to the canonical A·T(WC) DNA base pair via the intrapair sequential proton transfer with shifting towards major or minor grooves of DNA followed by further double proton transfer along the intermolecular H-bonds and are controlled by the plane symmetric and highly stable transition states – tight ion pairs formed by the A+ nucleobase, protonated by the N1/N7 nitrogen atoms, and T− nucleobase, deprotonated by the N3H imino group. Comparison of the estimated populations of the tautomerised states (10−21 to 10−14) with similar characteristics for the canonical A·T(WC) DNA base pair (10−8 to 10−7) leads authors to the conclusion, that only a base pair with WC architecture can be a building block of the DNA macromolecule as a genetic material, which is able for the evolutionary self-development. Among all four classical DNA base pairs, only A·T(WC) DNA base pair can ensure the proper rate of the spontaneous point errors of replication in DNA. We discovered tautomeric wobbling of the classical A·T DNA base pairs. This data evidence, that only a base pair with Watson–Crick architecture can be a building block of the DNA macromolecule as a genetic material, which is able for the evolutionary self-development.![]()
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
18
|
Ebrahimi S, Dabbagh HA, Eskandari K. Arrangement and nature of intermolecular hydrogen bonding in complex biomolecular systems: modeling the vitamin C---L-alanine interaction. Struct Chem 2017. [DOI: 10.1007/s11224-017-1046-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Cerón-Carrasco JP, Jacquemin D. Tuning the Optical Properties of Phenanthriplatin: Towards New Photoactivatable Analogues. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- José Pedro Cerón-Carrasco
- Bioinformatic and High Performance Research Group (BIO-HPC); Universidad Católica San Antonio de Murcia (UCAM), Campus los Jerónimos; 30107 Murcia Spain
| | - Denis Jacquemin
- CEISAM UMR CNRS 6230; Université de Nantes; 2, rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
- Institut Universitaire de France; 1 rue Descartes 75005 Paris Cedex 5 France
| |
Collapse
|
20
|
Brovarets' OO, Voiteshenko IS, Pérez-Sánchez H, Hovorun DM. A QM/QTAIM detailed look at the Watson-Crick↔wobble tautomeric transformations of the 2-aminopurine·pyrimidine mispairs. J Biomol Struct Dyn 2017; 36:1649-1665. [PMID: 28514900 DOI: 10.1080/07391102.2017.1331864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This work is devoted to the careful QM/QTAIM analysis of the evolution of the basic physico-chemical parameters along the intrinsic reaction coordinate (IRC) of the biologically important 2AP·T(WC)↔2AP·T*(w) and 2AP·C*(WC)↔2AP·C(w) Watson-Crick(WC)↔wobble(w) tautomeric transformations obtained at each point of the IRC using original authors' methodology. Established profiles reflect the high similarity between the courses of these processes. Basing on the scrupulous analysis of the profiles of their geometric and electron-topological parameters, it was established that the dipole-active WC↔w tautomerizations of the Watson-Crick-like 2AP·T(WC)/2AP·C*(WC) mispairs, stabilized by the two classical N3H⋯N1, N2H⋯O2 and one weak C6H⋯O4/N4 H-bonds, into the wobble 2AP·T*(w)/2AP·C(w) base pairs, respectively, joined by the two classical N2H⋯N3 and O4/N4H⋯N1 H-bonds, proceed via the concerted stepwise mechanism through the sequential intrapair proton transfer and subsequent large-scale shifting of the bases relative each other, through the planar, highly stable, zwitterionic transition states stabilized by the participation of the four H-bonds - N1+H⋯O4-/N4-, N1+H⋯N3-, N2+H⋯N3-, and N2+H⋯O2-. Moreover, it was found out that the 2AP·T(WC)↔2AP·T*(w)/2AP·C*(WC)↔2AP·C(w) tautomerization reactions occur non-dissociatively and are accompanied by the consequent replacement of the 10 unique patterns of the specific intermolecular interactions along the IRC. Obtained data are of paramount importance in view of their possible application for the control and management of the proton transfer, e.g. by external electric or laser fields.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Ivan S Voiteshenko
- b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Horacio Pérez-Sánchez
- c Computer Science Department , Bioinformatics and High Performance Computing (BIO-HPC) Research Group, Universidad Católica San Antonio de Murcia (UCAM) , Guadalupe, Murcia 30107 , Spain
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| |
Collapse
|
21
|
Brovarets' OO, Voiteshenko IS, Pérez-Sánchez H, Hovorun DM. A QM/QTAIM research under the magnifying glass of the DPT tautomerisation of the wobble mispairs involving 2-aminopurine. NEW J CHEM 2017. [DOI: 10.1039/c7nj00717e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a comprehensive survey of the changes of the physico-chemical parameters at each point of the IRC for the biologically important T·2AP*(w) ↔ T*·2AP(w) and G·2AP*(w) ↔ G*·2AP(w) DPT tautomerisation reactions involved in the point mutations (transitions and transversions) induced by 2-aminopurine (2AP) in DNA is provided.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Ivan S. Voiteshenko
- Department of Molecular Biotechnology and Bioinformatics
- Institute of High Technologies
- Taras Shevchenko National University of Kyiv
- 03022 Kyiv
- Ukraine
| | - Horacio Pérez-Sánchez
- Computer Science Department
- Bioinformatics and High Performance Computing (BIO-HPC) Research Group
- Universidad Católica San Antonio de Murcia (UCAM)
- 30107 Guadalupe (Murcia)
- Spain
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
22
|
Brovarets' OO, Pérez-Sánchez H. Whether 2-aminopurine induces incorporation errors at the DNA replication? A quantum-mechanical answer on the actual biological issue. J Biomol Struct Dyn 2016; 35:3398-3411. [PMID: 27794627 DOI: 10.1080/07391102.2016.1253504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this paper, we consider the mutagenic properties of the 2-aminopurine (2AP), which has intrigued molecular biologists, biophysicists and physical chemists for a long time and been widely studied by both experimentalists and theorists. We have shown for the first time using QM calculations, that 2AP very effectively produces incorporation errors binding with cytosine (C) into the wobble (w) C·2AP(w) mispair, which is supported by the N4H⋯N1 and N2H⋯N3 H-bonds and is tautomerized into the Watson-Crick (WC)-like base mispair C*·2AP(WC) (asterisk denotes the mutagenic tautomer of the base), that quite easily in the process of the thermal fluctuations acquires enzymatically competent conformation. 2AP less effectively produces transversions forming the wobble mispair with A base - A·2AP(w), stabilized by the participation of the N6H⋯N1 and N2H⋯N1 H-bonds, followed by further tautomerization A·2AP(w) → A*·2AP(WC) and subsequent conformational transition A*·2AP(WC) → A*·2APsyn thus acquiring enzymatically competent structure. In this case, incorporation errors occur only in those case, when 2AP belongs to the incoming nucleotide. Thus, answering the question posed in the title of the article, we affirm for certain that 2AP induces incorporation errors at the DNA replication. Obtained results are consistent well with numerous experimental data.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Horacio Pérez-Sánchez
- c Computer Science Department, Bioinformatics and High Performance Computing (BIO-HPC) Research Group , Universidad Católica San Antonio de Murcia (UCAM) , Murcia 30107 , Spain
| |
Collapse
|
23
|
Brovarets' OO, Pérez-Sánchez H. Whether the amino–imino tautomerism of 2-aminopurine is involved into its mutagenicity? Results of a thorough QM investigation. RSC Adv 2016. [DOI: 10.1039/c6ra24277d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2AP* mutagenic tautomer is able to induce only one incorporation error – transversion – by pairing through the H-bonds into the G·2AP* mispair.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Horacio Pérez-Sánchez
- Computer Science Department
- Bioinformatics and High Performance Computing (BIO-HPC) Research Group
- Universidad Católica San Antonio de Murcia (UCAM)
- Murcia
- Spain
| |
Collapse
|