1
|
Nayak K, Kumar A, Tripathi BP. Molecular grafting and zwitterionization based antifouling and underwater superoleophobic PVDF membranes for oil/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Effect of BSA and sodium alginate adsorption on decline of filtrate flux through polyethylene microfiltration membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117469] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Joh DY, Zimmers Z, Avlani M, Heggestad JT, Aydin HB, Ganson N, Kumar S, Fontes C, Achar RK, Hershfield MS, Hucknall AM, Chilkoti A. Architectural Modification of Conformal PEG-Bottlebrush Coatings Minimizes Anti-PEG Antigenicity While Preserving Stealth Properties. Adv Healthc Mater 2019; 8:e1801177. [PMID: 30908902 PMCID: PMC6819148 DOI: 10.1002/adhm.201801177] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/12/2019] [Indexed: 01/18/2023]
Abstract
Poly(ethylene glycol) (PEG), a linear polymer known for its "stealth" properties, is commonly used to passivate the surface of biomedical implants and devices, and it is conjugated to biologic drugs to improve their pharmacokinetics. However, its antigenicity is a growing concern. Here, the antigenicity of PEG is investigated when assembled in a poly(oligoethylene glycol) methacrylate (POEGMA) "bottlebrush" configuration on a planar surface. Using ethylene glycol (EG) repeat lengths of the POEGMA sidechains as a tunable parameter for optimization, POEGMA brushes with sidechain lengths of two and three EG repeats are identified as the optimal polymer architecture to minimize binding of anti-PEG antibodies (APAs), while retaining resistance to nonspecific binding by bovine serum albumin and cultured cells. Binding of backbone- versus endgroup-selective APAs to POEGMA brushes is further investigated, and finally the antigenicity of POEGMA coatings is assessed against APA-positive clinical plasma samples. These results are applied toward fabricating immunoassays on POEGMA surfaces with minimal reactivity toward APAs while retaining a low limit-of-detection for the analyte. Taken together, these results offer useful design concepts to reduce the antigenicity of polymer brush-based surface coatings used in applications involving human or animal matrices.
Collapse
Affiliation(s)
- Daniel Y. Joh
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Zackary Zimmers
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Manav Avlani
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Jacob T. Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Hakan B. Aydin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Nancy Ganson
- Department of Medicine, Division of Rheumatology, Duke University Medical Center, Durham, NC 27710 USA
| | - Shourya Kumar
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Cassio Fontes
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Rohan K. Achar
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Michael S. Hershfield
- Department of Medicine, Division of Rheumatology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710 USA
| | - Angus M. Hucknall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| |
Collapse
|
4
|
Covalent Immobilization of Arginine onto Polyacrylonitrile-Based Membrane for the Effective Separation of Oil/Water Emulsion. Macromol Res 2018. [DOI: 10.1007/s13233-019-7012-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Vanangamudi A, Saeki D, Dumée LF, Duke M, Vasiljevic T, Matsuyama H, Yang X. Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27477-27487. [PMID: 30048587 DOI: 10.1021/acsami.8b07945] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new biocatalytic nanofibrous composite ultrafiltration membrane was developed to reduce protein fouling interactions and self-clean the membrane surface. The dual-layer poly(vinylidenefluoride)/nylon-6,6/chitosan composite membrane contains a hydrophobic poly(vinylidenefluoride) cast support layer and a hydrophilic functional nylon-6,6/chitosan nanofibrous surface layer where enzymes were chemically attached. The intrinsic surface chemistry and high surface area of the nanofibers allowed optimal and stable immobilization of trypsin (TR) and α-chymotrypsin enzymes via direct covalent binding. The enzyme immobilization was confirmed by X-ray photoelectron spectroscopy and visualized by confocal microscopy analysis. The prepared biocatalytic composite membranes were nanoporous with superior permeability offering stable protein antiadhesion and self-cleaning properties owing to the repulsive mechanism and digestion of proteins into peptides and amino acids, which was quantified by the gel electrophoresis technique. The TR-immobilized composite membranes exhibited 2.7-fold higher permeance and lower surface protein contamination with 3-fold greater permeance recovery, when compared to the pristine membrane after two ultrafiltration cycles with the model feed solution containing bovine serum albumin/NaCl/CaCl2. The biocatalytic membranes retained about 50% of the enzyme activity after six reuse cycles but were regenerated to 100% activity after enzyme reloading, leading to a simple and cost-effective water remediation operation. Such surface- and pore-engineered membranes with self-cleaning properties offer a viable solution for severe surface protein contamination in food and water applications.
Collapse
Affiliation(s)
- Anbharasi Vanangamudi
- Institute for Frontier Materials , Deakin University , Waurn Ponds , Victoria 3216 , Australia
| | - Daisuke Saeki
- Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada, Kobe , Hyogo 657-8501 , Japan
| | - Ludovic F Dumée
- Institute for Frontier Materials , Deakin University , Waurn Ponds , Victoria 3216 , Australia
| | | | | | - Hideto Matsuyama
- Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada, Kobe , Hyogo 657-8501 , Japan
| | | |
Collapse
|