1
|
Self-Powered Photoelectrochemical Assay for Hg2+ Detection Based on g-C3N4-CdS-CuO Composites and Redox Cycle Signal Amplification Strategy. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A highly sensitive self-powered photoelectrochemical (spPEC) sensing platform was constructed for Hg2+ determination based on the g-C3N4-CdS-CuO co-sensitized photoelectrode and a visible light-induced redox cycle for signal amplification. Through successively coating the single-layer g-C3N4, CdS, and CuO onto the surface of an electrode, the modified electrode exhibited significantly enhanced PEC activity. The microstructure of the material was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). However, the boost in photocurrent could be noticeably suppressed due to the consumption of hole-scavenging agents (reduced glutathione) by the added Hg2+. Under optimal conditions, we discovered that the photocurrent was linearly related to the Hg2+ concentration in the range of 5 pM–100 nM. The detection limit for Hg2+ was 0.84 pM. Moreover, the spPEC sensor demonstrated good performance for the detection of mercury ions in human urine and artificial saliva.
Collapse
|
2
|
TiO2/CuInS2-sensitized structure for sensitive photoelectrochemical immunoassay of cortisol in saliva. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-021-05101-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|