1
|
Jia G, Huang Z, Fan Y, Zhao L, Lai W, Dou SX, Wang X, Xiang H, Zhu M. Synergistic effects enabled efficient photocatalytic removal of ofloxacin antibiotic in wastewater by layered double hydroxides loaded lignin-derived carbon fibers. Int J Biol Macromol 2024; 282:136835. [PMID: 39447796 DOI: 10.1016/j.ijbiomac.2024.136835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The environmental problems caused by the abuse of antibiotics are raising serious attention, and the removal of antibiotics in wastewater is meaningful yet challenging. In this work, lignin-derived carbon fibers loaded layered double hydroxides (LDH@LCF) has been prepared for the removal of ofloxacin (OFX) from wastewater via photocatalysis, which exhibit a high degradation efficiency of 96 % under visible light and maintained 90 % after five reuses. The effects of Zn2+/Fe3+ in the samples and other parameters affecting the photocatalytic efficiency of OFX have been systematically investigated. Results demonstrated that the enhanced photocatalytic efficiency is derived from the synergistic effect of the Zn2+ and Fe3+ in the LDH with a reduced band gap of the catalyst, higher number of oxygen and metal unsaturated coordination sites, and rapid removal of photogenerated electrons. The working mechanism and degradation pathways for OFX by LDH@LCF are also elucidated in detail.
Collapse
Affiliation(s)
- Guosheng Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zhiwei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yameng Fan
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia.
| | - Weihong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Shi Xue Dou
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia; Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Tonelli D, Tonelli M, Gianvittorio S, Lesch A. LDH-Based Voltammetric Sensors. MICROMACHINES 2024; 15:640. [PMID: 38793212 PMCID: PMC11123164 DOI: 10.3390/mi15050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Layered double hydroxides (LDHs), also named hydrotalcite-like compounds, are anionic clays with a lamellar structure which have been extensively used in the last two decades as electrode modifiers for the design of electrochemical sensors. These materials can be classified into LDHs containing or not containing redox-active centers. In the former case, a transition metal cation undergoing a reversible redox reaction within a proper potential window is present in the layers, and, therefore, it can act as electron transfer mediator, and electrocatalyze the oxidation of an analyte for which the required overpotential is too high. In the latter case, a negatively charged species acting as a redox mediator can be introduced into the interlayer spaces after exchanging the anion coming from the synthesis, and, again, the material can display electrocatalytic properties. Alternatively, due to the large specific surface area of LDHs, molecules with electroactivity can be adsorbed on their surface. In this review, the most significant electroanalytical applications of LDHs as electrode modifiers for the development of voltammetric sensors are presented, grouping them based on the two types of materials.
Collapse
Affiliation(s)
- Domenica Tonelli
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy; (S.G.); (A.L.)
| | - Matteo Tonelli
- ANRT—Association Nationale de le Reserche et de la Technologie, 33, Rue Rennequin, 75017 Paris, France;
| | - Stefano Gianvittorio
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy; (S.G.); (A.L.)
| | - Andreas Lesch
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy; (S.G.); (A.L.)
| |
Collapse
|
3
|
Yan Y, Zhong J, Wang R, Yan S, Zou Z. Trivalent Nickel-Catalyzing Electroconversion of Alcohols to Carboxylic Acids. J Am Chem Soc 2024; 146:4814-4821. [PMID: 38323566 DOI: 10.1021/jacs.3c13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The comprehension of activity and selectivity origins of the electrooxidation of organics is a crucial knot for the development of a highly efficient energy conversion system that can produce value-added chemicals on both the anode and cathode. Here, we find that the potential-retaining trivalent nickel in NiOOH (Fermi level, -7.4 eV) is capable of selectively oxidizing various primary alcohols to carboxylic acids through a nucleophilic attack and nonredox electron transfer process. This nonredox trivalent nickel is highly efficient in oxidizing primary alcohols (methanol, ethanol, propanol, butanol, and benzyl alcohol) that are equipped with the appropriate highest occupied molecular orbital (HOMO) levels (-7.1 to -6.5 eV vs vacuum level) and the negative dual local softness values (Δsk, -0.50 to -0.19) of nucleophilic atoms in nucleophilic hydroxyl functional groups. However, the carboxylic acid products exhibit a deeper HOMO level (<-7.4 eV) or a positive Δsk, suggesting that they are highly stable and weakly nucleophilic on NiOOH. The combination (HOMO, Δsk) is useful in explaining the activity and selectivity origins of electrochemically oxidizing alcohols to carboxylic acid. Our findings are valuable in creating efficient energy conversions to generate value-added chemicals on dual electrodes.
Collapse
Affiliation(s)
- Yuandong Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Jiaying Zhong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Ruyi Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Shicheng Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
4
|
Rajpure MM, Jadhav HS, Kim H. Layer interfacing strategy to derive free standing CoFe@PANI bifunctional electrocatalyst towards oxygen evolution reaction and methanol oxidation reaction. J Colloid Interface Sci 2024; 653:949-959. [PMID: 37776722 DOI: 10.1016/j.jcis.2023.09.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Developing inexpensive, highly electrochemically active, and stable catalysts towards electrochemical studies remains challenge for researchers. In this regard, binder-free CoFe@PANI composite electrocatalyst is deposited on nickel foam (NF) substrate via successive electrodeposition of polyaniline (PANI) and CoFe-LDH at Room temperature (RT). As deposited binder-free CoFe@PANI electrocatalyst displays high electrocatalytic activity towards oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) in alkaline media. In CoFe@PANI structure, interfacing of high-electron conducting PANI establishes strong interconnection with CoFe-LDH by tuning electronic structures, which accelerates the electrochemical performance towards OER and MOR. For OER, CoFe@PANI requires low overpotential (η10) of 237 mV to reach current density (Id) of 10 mA cm-2 and displays low Tafel slope value of 46 mV dec-1 in 1 M KOH solution. Also, it displayed specific Id of 120 mA cm-2, when it was tested for MOR in 1 M KOH with 0.5 M methanol solution. The superior electrocatalytic activity of CoFe@PANI is mainly ascribed to high electrochemical active surface area (ECSA), abundant active sites and fast electron transfer between electrocatalyst and electrode surface. Of note, the current work may open new era for design and development of non-precious highly active and stable hybrid electrocatalysts at RT for various applications.
Collapse
Affiliation(s)
- Manoj M Rajpure
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Harsharaj S Jadhav
- Centre for Materials for Electronics Technology (C-MET), Pune 411 008, India.
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
5
|
Alhumaimess MS, Aldosari OF, Alqhobisi AN, Alhaidari LM, Altwala A, Alzarea LA, Hassan HMA. A Facile Approach of Fabricating Bifunctional Catalysts for Redox Applications by Uniformly Immobilized Metallic Nanoparticles on NiCr LDH. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:987. [PMID: 36985881 PMCID: PMC10053817 DOI: 10.3390/nano13060987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
This study discloses the development of NiCr LDH, Ag@NiCr LDH, and Pd@NiCr LDH bifunction catalysts using a hydrothermal coprecipitation method followed by sol immobilization of metallic nanoparticles. The structures and morphologies of the synthesized nanocomposites were analyzed using FTIR, XRD, XPS, BET, FESEM-EDX, and HRTEM. The catalytic effectiveness of the samples was evaluated by tracking the progression of NaBH4-mediated nitrobenzene (NB) reduction to aniline and CO oxidation using UV-visible spectrophotometry and an infrared gas analyzer, respectively. Pd@NiCr LDH displayed much higher performance for both reactions than the bare NiCr LDH. The catalyst Pd@NiCr LDH showed robust catalytic activity in both the oxidation of carbon monoxide (T50% (136.1 °C) and T100% (200.2 °C)) and NaBH4-mediated nitrobenzene reduction (98.7% conversion and 0.365 min-1 rate constant). The results disclose that the Ni2+@ Cr3+/Cr6+ @Pd° ion pairs inside the LDH act as a charge transfer center and hence significantly enhance the catalytic performance. As a result, this research offers the novel NiCr LDH catalyst as a bifunctional catalyst for air depollution control and the organic transformation process.
Collapse
Affiliation(s)
- Mosaed S. Alhumaimess
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Obaid F. Aldosari
- Department of Chemistry, Faculty of Science, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Almaha N. Alqhobisi
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Laila M. Alhaidari
- Department of Chemistry, Faculty of Science, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Afnan Altwala
- Department of Chemistry, Faculty of Science, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Linah A. Alzarea
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Hassan M. A. Hassan
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| |
Collapse
|
6
|
Insights into synergistic utilization of residual of ternary layered double hydroxide after oxytetracycline as a potential catalyst for methanol electrooxidation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Zhang X, Yang Y, Xiong L, Wang T, Tang Z, Li P, Yin N, Sun A, Shen J. 3D dahlia-like NiAl-LDH/CdS heterosystem coordinating with 2D/2D interface for efficient and selective conversion of CO2. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Song Y, Ji K, Duan H, Shao M. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. EXPLORATION (BEIJING, CHINA) 2021; 1:20210050. [PMID: 37323686 PMCID: PMC10191048 DOI: 10.1002/exp.20210050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Hydrogen production via electrochemical water splitting is one of the most green and promising ways to produce clean energy and address resource crisis, but still suffers from low efficiency and high cost mainly due to the sluggish oxygen evolution reaction (OER) process. Alternatively, electrochemical hydrogen-evolution coupled with alternative oxidation (EHCO) has been proposed as a considerable strategy to improve hydrogen production efficiency combined with the production of high value-added chemicals. Although with these merits, high-efficient electrocatalysts are always needed in practical operation. Typically, layered double hydroxides (LDHs) have been developed as a large class of advanced electrocatalysts toward both OER and EHCO with high efficiency and stability. In this review, we have summarized the latest progress of hydrogen production from the perspectives of designing efficient LDHs-based electrocatalysts for OER and EHCO. Particularly, the influence of structure design and component regulation on the efficiency of their electrocatalytic process have been discussed in detail. Finally, we look forward to the challenges in the field of hydrogen production via electrochemical water splitting coupled with organic oxidation, such as the mechanism, selected oxidation as well as system design, hoping to provide certain inspiration for the development of low-cost hydrogen production technology.
Collapse
Affiliation(s)
- Yingjie Song
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
| | - Kaiyue Ji
- Department of ChemistryTsinghua UniversityBeijingP. R. China
| | - Haohong Duan
- Department of ChemistryTsinghua UniversityBeijingP. R. China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
| |
Collapse
|
9
|
Abdelrazek GM, EL-Deeb MM, Farghali AA, Pérez-Cadenas AF, Abdelwahab A. Design of Self-Supported Flexible Nanostars MFe-LDH@ Carbon Xerogel-Modified Electrode for Methanol Oxidation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5271. [PMID: 34576486 PMCID: PMC8465867 DOI: 10.3390/ma14185271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Layered double hydroxides (LDHs) have emerged as promising electrodes materials for the methanol oxidation reaction. Here, we report on the preparation of different LDHs with the hydrothermal process. The effect of the divalent cation (i.e., Ni, Co, and Zn) on the electrochemical performance of methanol oxidation was investigated. Moreover, nanocomposites of LDHs and carbon xerogels (CX) supported on nickel foam (NF) substrate were prepared to investigate the role of carbon xerogel. The results show that NiFe-LDH/CX/NF is an efficient electrocatalyst for methanol oxidation with a current density that reaches 400 mA·m-2 compared to 250 and 90 mA·cm-2 for NiFe-LDH/NF and NF, respectively. In addition, all LDH/CX/NF nanocomposites show excellent stability for methanol oxidation. A clear relationship is observed between the electrodes crystallite size and their activity to methanol oxidation. The smaller the crystallite size, the higher the current density delivered. Additionally, the presence of carbon xerogel in the nanocomposites offer 3D interconnected micro/mesopores, which facilitate both mass and electron transport.
Collapse
Affiliation(s)
- Ghada M. Abdelrazek
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt; (G.M.A.); (A.A.F.); (A.A.)
- Chemistry Department, Faculty of Engineering, Basic Science, Misr University for Science and Technology (MUST), 6th of October City, Giza 12566, Egypt
| | - Mohamed M. EL-Deeb
- Applied Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt; (G.M.A.); (A.A.F.); (A.A.)
| | - Agustín F. Pérez-Cadenas
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071 Granada, Spain
| | - Abdalla Abdelwahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt; (G.M.A.); (A.A.F.); (A.A.)
- Faculty of Science, Galala University, Sokhna, Suez 43511, Egypt
| |
Collapse
|
10
|
Motokura K, Ozawa N, Sato R, Manaka Y, Chun W. Porous FeO(OH) Dispersed on Mg‐Al Hydrotalcite Surface for One‐Pot Synthesis of Quinoline Derivatives. ChemCatChem 2021. [DOI: 10.1002/cctc.202100338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ken Motokura
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
- PRESTO, Japan Science and Technology Agency (JST) 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
- Present address: Department of Chemistry and Life Science Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Nao Ozawa
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - Risako Sato
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - Yuichi Manaka
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
- Renewable Energy Research Center National Institute of Advanced Industrial Science and Technology (AIST) 2-2-9 Machiikedai, Koriyama Fukushima 963-0298 Japan
| | - Wang‐Jae Chun
- Graduate School of Arts and Sciences International Christian University Mitaka, Tokyo 181-8585 Japan
| |
Collapse
|
11
|
Gamil S, Antuch M, Zedan I, El Rouby WM. 3D NiCr-layered double hydroxide/reduced graphene oxide sand rose-like structure as bifunctional electrocatalyst for methanol oxidation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Ding J, Sun Q, Zhong L, Wang X, Chai L, Li Q, Li TT, Hu Y, Qian J, Huang S. Thermal conversion of hollow nickel-organic framework into bimetallic FeNi3 alloy embedded in carbon materials as efficient oer electrocatalyst. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136716] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Synergetic electrocatalytic activities towards hydrogen peroxide: Understanding the ordered structure of PdNi bimetallic nanocatalysts. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Gamil S, El Rouby WA, Antuch M, Zedan IT. Nanohybrid layered double hydroxide materials as efficient catalysts for methanol electrooxidation. RSC Adv 2019; 9:13503-13514. [PMID: 35519556 PMCID: PMC9063938 DOI: 10.1039/c9ra01270b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
In this work, efficient methanol oxidation fuel cell catalysts with excellent stability in alkaline media have been synthesized by including transition metals to the layered double hydroxide (LDH) nanohybrids. The nanohybrids CoCr-LDH, NiCoCr-LDH and NiCr-LDH were prepared by co-precipitation and their physicochemical characteristics were investigated using TEM, XRD, IR and BET analyses. The nanohybrid CoCr-LDH is found to have the highest surface area of 179.87 m2 g−1. The electrocatalytic activity measurements showed that the current density was increased by increasing the methanol concentration (from 0.1 to 3 M) as a result of its increased oxidation at the surface. The nanohybrid NiCr-LDH, showing the highest pore size (55.5 Å) showed the highest performance for methanol oxidation, with a current density of 7.02 mA cm−2 at 60 mV s−1 using 3 M methanol. In addition, the corresponding onset potential was 0.35 V (at 60 mV s−1 using 3 M methanol) which is the lowest value among all other used LDH nanohybrids. Overall, we observed the following reactivity order: NiCr-LDH > NiCoCr-LDH > CoCr-LDH, as derived from the impedance spectroscopy analysis. Methanol electrooxidation over layered double hydroxides.![]()
Collapse
Affiliation(s)
- Shimaa Gamil
- Renewable Energy Science and Engineering Department
- Faculty of Postgraduate Studies for Advanced Science
- Beni-Suef University
- 62511 Beni-Suef
- Egypt
| | - Waleed M. A. El Rouby
- Materials Science and Nanotechnology Department
- Faculty of Postgraduate Studies for Advanced Science
- Beni-Suef University
- 62511 Beni-Suef
- Egypt
| | | | - I. T. Zedan
- Renewable Energy Science and Engineering Department
- Faculty of Postgraduate Studies for Advanced Science
- Beni-Suef University
- 62511 Beni-Suef
- Egypt
| |
Collapse
|
15
|
Cao J, Chen H, Zhang X, Zhang Y, Liu X. Graphene-supported platinum/nickel phosphide electrocatalyst with improved activity and stability for methanol oxidation. RSC Adv 2018; 8:8228-8232. [PMID: 35542028 PMCID: PMC9078543 DOI: 10.1039/c7ra13303k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
In this paper, we report a novel catalyst using Ni2P as a cocatalyst of Pt supported on graphene for methanol oxidation.
Collapse
Affiliation(s)
- Jiamu Cao
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing
- Ministry of Education
- Harbin 150001
- China
| | - Hailong Chen
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing
- Ministry of Education
- Harbin 150001
- China
| | - Xuelin Zhang
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing
- Ministry of Education
- Harbin 150001
- China
- MEMS Center
| | - Yufeng Zhang
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing
- Ministry of Education
- Harbin 150001
- China
- MEMS Center
| | - Xiaowei Liu
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing
- Ministry of Education
- Harbin 150001
- China
- MEMS Center
| |
Collapse
|
16
|
Oliver-Tolentino MA, Ramos-Sánchez G, Manzo-Robledo A, Ramírez-Rosales D, Flores-Moreno JL, Lima E, Guzmán-Vargas A. Some Attributes of Mn3+
Sites in Nickel-Based Layered Double Hydroxides during Methanol Electro-oxidation in Alkaline Media. ChemElectroChem 2017. [DOI: 10.1002/celc.201701093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miguel A. Oliver-Tolentino
- Instituto Politécnico Nacional, ESIQIE-SEPI-DIQI; Laboratorio de Investigación en Materiales Porosos, Catálisis Ambiental y Química Fina (LiMpCaQu-F); UPALM Edif. 7 P.B. Zacatenco, GAM México CDMX 07738 Mexico
| | - Guadalupe Ramos-Sánchez
- CONACYT comisionado a Universidad Autónoma; Metropolitana-Iztapalapa, Departamento de Química; Av. San Rafael Atlixco 186. Col. Vicentina México DF 09340 Mexico
| | - Arturo Manzo-Robledo
- Instituto Politécnico Nacional, ESIQIE-DIQI; Laboratorio de Electroquímica y Corrosión; Edif. Z-5 3er piso, UPALM, Zacatenco, GAM México DF 07738 Mexico
| | - Daniel Ramírez-Rosales
- Instituto Politécnico Nacional; ESFM-Departamento de Física; UPALM Edif. 9 Zacatenco, GAM México DF 07738 Mexico
| | - Jorge L. Flores-Moreno
- Universidad Autónoma Metropolitana-Azcapotzalco; Área de Química de Materiales; Av.SanPablo180, Col. Reynosa Tamaulipas México DF 02200 Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y, Reactividad de Superficies (LaFReS); IIM - Universidad Nacional Autónoma de México; Circuito Exterior s/n, Cd. Universitaria Coyoacán DF 04510 Mexico
| | - Ariel Guzmán-Vargas
- Instituto Politécnico Nacional, ESIQIE-SEPI-DIQI; Laboratorio de Investigación en Materiales Porosos, Catálisis Ambiental y Química Fina (LiMpCaQu-F); UPALM Edif. 7 P.B. Zacatenco, GAM México CDMX 07738 Mexico
| |
Collapse
|
17
|
Bo X, Li Y, Hocking RK, Zhao C. NiFeCr Hydroxide Holey Nanosheet as Advanced Electrocatalyst for Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41239-41245. [PMID: 29111654 DOI: 10.1021/acsami.7b12629] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
By introducing chromium into a nickel-iron layered double hydroxide (LDH), a nickel iron chromium hydroxide nanomesh catalyst has been achieved on nickel foam substrate via electrodeposition followed by partial etching of chromium. The electrodeposited chromium acts as a sacrificial template to introduce holes in the LDH to increase the electrochemically active surface area, and the remaining chromium synergistically modulates the electronic structure of the composite. The obtained electrode shows extraordinary performance for oxygen evolution reaction and excellent electrochemical stability. The onset potential of the as-prepared electrode in 1 M KOH is only 1.43 V vs RHE, and the overpotential to achieve a high current density of 100 mA·cm-2 is only 255 mV, outperforming benchmark nonprecious NiFe hydroxide composite electrode in alkaline media.
Collapse
Affiliation(s)
- Xin Bo
- School of Chemistry, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Yibing Li
- School of Chemistry, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Rosalie K Hocking
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering & Technology, Swinburne University of Technology , Hawthorn, Melbourne, VIC 3122, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales , Sydney, NSW 2052, Australia
| |
Collapse
|