1
|
Labeeb AM, Ward YA, Fikry M. Thermal control of tunable photonic optical bandgaps in different cholesteric liquid crystals mixtures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Environmentally Stable Chiral-Nematic Liquid-Crystal Elastomers with Mechano-Optical Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chiral-nematic liquid crystal (N* LC) elastomers exhibit mechano-optical responsive behavior. However, practical sensor applications have been limited by the intrinsic sensitivity of N* LC elastomers to environmental conditions, such as temperature. Although densely cross-linked LC network polymers exhibit high thermal stability, they are not proper for the mechanical sensor due to high glass transition temperatures and low flexibility. To overcome these issues, we focused on enhancing thermal stability by introducing noncovalent cross-linking sites via intermolecular interactions between LC molecules bonded to the polymer network. N* LC elastomers with a cyanobiphenyl derivative as a side-chain mesogen exhibited mechano-optical responsive behavior, with a hypsochromic shift of the reflection peak wavelength under an applied tensile strain and quick shape and color recovery owing to high elasticity. Notably, the N* LC elastomers showed high resistance to harsh environments, including high temperatures and various solvents. Interactions, such as π–π stacking and dipole–dipole interactions, between the cyanobiphenyl units can act as weak cross-links, thus improving the thermal stability of the LC phase without affecting the mechano-optical response. Thus, these N* LC elastomers have great potential for the realization of practical mechano-optical sensors.
Collapse
|
3
|
Mahajan LH, Ndaya D, Deshmukh P, Peng X, Gopinadhan M, Osuji CO, Kasi RM. Optically Active Elastomers from Liquid Crystalline Comb Copolymers with Dual Physical and Chemical Cross-Links. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01157] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | | | | | - Manesh Gopinadhan
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Chinedum O. Osuji
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | | |
Collapse
|