1
|
Huang Y, Zhang J, Sui B, Chai G, Yu A, Chen S, Zhang M, Zhang S, Zhang Y, Zhao W. Development of an angle-adjustable photonic crystal fluorescence platform for sensitive detection of oxytetracycline. Chem Commun (Camb) 2024; 60:8115-8118. [PMID: 38994726 DOI: 10.1039/d4cc02363c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
We pioneered an angle-adjustable photonic crystal fluorescence platform (APC-Fluor) that integrates PCs, an angular resolution spectrometer and a strategically aligned laser source. This configuration, featuring a coaxial rotating swing arm, allows for precise control over the angles of incidence and emission. The presence of photonic crystal microcavities facilitates the dispersion of fluorescent materials and promotes the transition of electrons from the excited state to the lowest vibrational energy level. The optical resonance effect triggered by modulating the alignment of the reflection peaks of the photonic crystals with the emission peaks of the fluorescent materials can significantly enhance the fluorescence intensity. Compared with the single BSA-AuNCs, the optimized fluorescence intensity can be significantly increased by 11.9-fold. The APC-Fluor system showcases rapid and highly sensitive detection capabilities for oxytetracycline (OTC), exhibiting a response across a concentration range from 2 to 1 × 104 nM and achieving a notably low detection limit of 1.03 nM.
Collapse
Affiliation(s)
- Yunhuan Huang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jiaheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- Food Laboratory of Zhongyuan - Zhengzhou University, Luohe 462300, P. R. China
| | - Bo Sui
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Guobi Chai
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Sheng Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miaomiao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shusheng Zhang
- Food Laboratory of Zhongyuan - Zhengzhou University, Luohe 462300, P. R. China
| | - Yanhao Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
2
|
Mohammed Ameen SS, Omer KM. Three in one: coordination-induced emission for inherent fluorescent Al-MOF synthesis combined with inner filter effect@aggregation-induced emission mechanisms for designing color tonality and ratiometric sensing platforms. Mikrochim Acta 2024; 191:461. [PMID: 38990273 DOI: 10.1007/s00604-024-06535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Three phenomena, namely coordination-induced emission (CIE), aggregation-induced emission (AIE), and inner filter effect (IFE), were incorporated into the design of a ratiometric and color tonality-based biosensor. Blue fluorescent Al-based metal-organic frameworks (FMIL-96) were prepared from non-emissive ligand and aluminum ions via CIE. Interestingly, the addition of tetracycline (TC) led to ratiometric detection and color tonality, as the blue emission at 380 nm was quenched (when excited at 350 nm) due to IFE, while the green-yellowish emission at 525 nm was enhanced due to AIE. Based on that, an ultra-sensitive visual-based color tonality mode with smartphone assistance was developed for detection of TC. The sensor exhibited a linear relationship within a broad range of 2.0 to 85.0 μM TC with a detection limit of 68.0 nM. TC in milk samples was quantified with high accuracy and precision. This integration of smartphone and visual fluorescence in solution is accurate, reliable, cost-effective, and time-saving, providing an alternative strategy for the semi-quantitative determination of TC on-site.
Collapse
Affiliation(s)
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St. 46002, Sulaymaniyah, Kurdistan Region, Iraq.
| |
Collapse
|
3
|
Mohammed Ameen SS, Qasim FO, Alhasan HS, Hama Aziz KH, Omer KM. Intrinsic Dual-State Emission Zinc-Based MOF Rodlike Nanostructures with Applications in Smartphone Readout Visual-Based Detection for Tetracycline: MOF-Based Color Tonality. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46098-46107. [PMID: 37733947 DOI: 10.1021/acsami.3c11950] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Dual-state emitters (DSEs) are entities that exhibit fluorescence in both the solution and solid state, which open up a wide range of possibilities for their utilization in various fields. The development of detection platforms using intrinsic luminescent metal-organic frameworks (LMOFs) is highly desirable for a variety of applications. DSE MOFs as a subclass of intrinsic LMOFs are highly attractive due to no need for encapsulation/functionalization by fluorophores and/or using luminescent linkers. Herein, a highly stable intrinsic dual-state blue emission (λem = 425 nm) zinc-based MOF with rodlike nanostructures (denoted as UoZ-2) was synthesized and characterized. To the best of our knowledge, intrinsic DSE of Zn-MOFs with blue emission in the dispersed form in solution and solid-state fluorescence have not been reported yet. When tetracycline (TC) was added, a continuous color evolution from blue to greenish-yellow with dramatic enhancement was observed due to aggregation induced emission (AIE). Thus, a sensitive ratiometry-based visual detection platform, in solution and on paper independently, was designed for detection of TC exploiting the DSE and AIE properties of UoZ-2 alone and UoZ-2:TC. The detection limit was estimated to be 4.5 nM, which is considered to be one of the most sensitive ratiometric fluorescent probes for TC sensing. The ratiometry paper-based UoZ-2 sensor displays a reliable TC quantitative analysis by recognizing RGB values in the on-site TC detection with satisfactory recoveries.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, Faculty of Science, University of Zakho, Zakho 42002, Kurdistan Region, Iraq
| | - Faroq Omer Qasim
- Department of Horticulture, Technical College of Akre, Duhok Polytechnic University, Duhok 42001, Kurdistan Regin, Iraq
- Department of Horticulture, Technical College of Akre, Akre University for Applied Sciences, 42001, Kurdistan Region, Iraq
| | - Huda S Alhasan
- Environmental Research and Studies Center, University of Babylon, Hilla 51002, Iraq
| | - Kosar H Hama Aziz
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Sulaimaniyah 46001, Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, 46002 Sulaimani City, Kurdistan Region, Iraq
| |
Collapse
|
4
|
Althomali RH, Hamoud Alshahrani S, Qasim Almajidi Y, Kamal Hasan W, Gulnoza D, Romero-Parra RM, Abid MK, Radie Alawadi AH, Alsalamyh A, Juyal A. Current Trends in Nanomaterials-Based Electrochemiluminescence Aptasensors for the Determination of Antibiotic Residues in Foodstuffs: A Comprehensive Review. Crit Rev Anal Chem 2023; 54:3252-3268. [PMID: 37480552 DOI: 10.1080/10408347.2023.2238059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Veterinary pharmaceuticals have been recently recognized as newly emerging environmental contaminants. Indeed, because of their uncontrolled or overused disposal, we are now facing undesirable amounts of these constituents in foodstuff and its related human health concerns. In this context, developing a well-organized environmental and foodstuff screening toward antibiotic levels is of paramount importance to ensure the safety of food products as well as human health. In this case, with the development and progress of electric/photo detecting, nanomaterials, and nucleic acid aptamer technology, their incorporation-driven evolving electrochemiluminescence aptasensing strategy has presented the hopeful potentials in identifying the residual amounts of different antibiotics toward sensitivity, economy, and practicality. In this context, we reviewed the up-to-date development of ECL aptasensors with aptamers as recognition elements and nanomaterials as the active elements for quantitative sensing the residual antibiotics in foodstuff and agriculture-related matrices, dissected the unavoidable challenges, and debated the upcoming prospects.
Collapse
Affiliation(s)
- Raed H Althomali
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | | | - Wajeeh Kamal Hasan
- Department of Radiology and Sonar Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Djakhangirova Gulnoza
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Tashkent, Uzbekistan
| | | | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | | | - Ali Alsalamyh
- College of Technical Engineering, Imam Jafar Al-Sadiq University, Al-Muthanna, Iraq
| | - Ashima Juyal
- Division of Research & Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
5
|
Li Y, Gao X, Fang Y, Cui B, Shen Y. Nanomaterials-driven innovative electrochemiluminescence aptasensors in reporting food pollutants. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Mohammed Ameen SS, Sher Mohammed NM, Omer KM. Ultra-small highly fluorescent zinc-based metal organic framework nanodots for ratiometric visual sensing of tetracycline based on aggregation induced emission. Talanta 2023; 254:124178. [PMID: 36549132 DOI: 10.1016/j.talanta.2022.124178] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/19/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Color tonality by intrinsic fluorescent metal-organic frameworks (MOFs) is highly desirable in bioanalytical applications due to its stability, low-cost and robustness with no need for functionalization and/or encapsulation of fluorophores. In the present work, ultra-small and higly fluorescent zinc-based MOFs (FMOF-5) were synthesized. The prepared FMOFs were around 5 nm in size, and gave strong blue emission at 440 nm when excited at 350 nm. Interestingly, tetracycline (TC) selectively tuned the blue emission of FMOF-5 to greenish-yellow emission (520 nm) with dramatic enhancement through aggregation induced emission (AIE). The fluorimetric analysis of TC was carried out through the ratiometric peak intensities of F520/F440, with detection limit (LOD) of 5 nM. To realize quantitative point-of-care based on color tonality, a smartphone integrated with the ratiometric visual platform was thereby design. Hence, TC was visually detected with LOD of 10 nM. The prepared FMOF-5-based probe showed high stability (3 months) and reusability (∼10 times). The developed visual-based platform presents great promise for practical point of care testing due to its low-cost, robustness, ruggedness, simple operation, and excellent selectivity and repeatability.
Collapse
Affiliation(s)
| | - Nidhal M Sher Mohammed
- Department of Chemistry, Faculty of Science, University of Zakho, Kurdistan region, Iraq.
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St., 460002, Sulaimani City, Kurdistan region, Iraq; Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St., 460002, Sulaimani City, Kurdistan region, Iraq.
| |
Collapse
|
7
|
Shen Y, Gao X, Lu HJ, Nie C, Wang J. Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Nazlawy HN, Zaazaa HE, Merey HA, Atty SA. Green validated chromatographic methods for simultaneous determination of co-formulated oxytetracycline HCl and flunixin meglumine in the presence of their impurities in different matrices. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractGreen analytical chemistry is an important area of chemical sciences. So, developing competent eco-friendly analytical tools is a big challenge. This study devotes two chromatographic techniques for the simultaneous determination of a binary formulated mixture of oxytetracycline HCl (OXY) and flunixin meglumine (FLU), and their impurities tetracycline (TRC) and 2-chloronicotinic acid (CNA), respectively. Primarily, a TLC densitometric method is proposed and validated using TLC plates sprayed with 5% EDTA of pH 9 as a stationary phase and (acetonitrile/ distilled water/ ethanol 7:2:1, by volume) as a developing system. Well-separated spots are detected at 267 nm where linear relations have been achieved at 0.05–2 μg/band and 0.01–2 μg/band for OXY and FLU, respectively. The second developed and validated method is HPLC which is fulfilled on Hypersil BDS column-C18. A mobile phase of distilled water with 0.1%TFA/ acetonitrile in a ratio of 82: 18, v/v firstly then 70: 30, v/v after 9 min is used in a sequential isocratic elution at 210 nm for FLU and 267 nm for OXY, TRC, and CNA. Sensitive and wide linearity ranges are achieved at 0.05–200 μg/mL for both drugs. The two methods are applied successfully in cattle meat and milk for cited drugs determination. According to ICH guidelines, a validation study has been accomplished for the proposed methods. Statistical comparison has been carried out with official and reported methods. Eventually, the greenness of both procedures is evaluated using Eco-Scale which gives eco-friendly results.
Graphical abstract
Collapse
|
9
|
Wang Q, Li X, Yang K, Zhao S, Zhu S, Wang B, Yi J, Zhang Y, Song X, Lan M. Carbon Dots and Eu 3+ Hybrid-Based Ratiometric Fluorescent Probe for Oxytetracycline Detection. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qin Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiangcao Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke Yang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Shaojing Zhao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Shaohua Zhu
- Hunan Norui Environmental Technology Co., Ltd., Changsha 410021, P. R. China
| | - Benhua Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jianing Yi
- Surgical Department of Breast and Thyroid Gland, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, P. R. China
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, P. R. China
| | - Xiangzhi Song
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, P. R. China
- Shenzhen Research Institute of Central South University, Shenzhen 518057, Hunan, P. R. China
| |
Collapse
|
10
|
Shen Y, Wei Y, Zhu C, Cao J, Han DM. Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214442] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Mo M, Wang X, Ye L, Su Y, Zhong Y, Zhao L, Zhou Y, Peng J. A simple paper-based ratiometric luminescent sensor for tetracyclines using copper nanocluster-europium hybrid nanoprobes. Anal Chim Acta 2022; 1190:339257. [PMID: 34857135 DOI: 10.1016/j.aca.2021.339257] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022]
Abstract
Tetracyclines (TCs), as one of the broad-spectrum antibiotics, are widely used to treat bacterial infections. The residues of TCs in animal-origin foods and drinking water have raised safety concerns and affected the public health. Thus, there is a high demand to develop a simple and rapid method for the detection of TCs. In this work, we developed a ratiometric luminescence probe for the sensitive and visualized detection of TCs. Specifically, tannic acid-stabilized copper nanoclusters (TA-CuNCs) with blue emission at 433 nm were synthesized. The luminescence of TA-CuNCs attenuated partially by the europium ions (Eu3+) due to the aggregation-induced quenching. When TCs were added to the TA-CuNCs-Eu3+ system, the luminescence of TA-CuNCs at 433 nm can be further quenched by the inner-filter effect, and the characteristic luminescence of Eu3+ at 617 nm emerged due to the formation of Eu3+-TCs complex. The ratio of the luminescence at 617 nm-433 nm increased linearly to the concentration of TCs. Additionally, we demonstrated the detection of oxytetracycline in real samples such as tap and lake water, milk, pharmaceutical industry wastewater, honey and soil extract with high recovery rate (97.25%-103.44%). Furthermore, a portable paper device is fabricated by the luminescent probe to conduct the on-site analysis of TCs.
Collapse
Affiliation(s)
- Mengjiao Mo
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xueshen Wang
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Lingyue Ye
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yaoquan Su
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yang Zhong
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Yunyun Zhou
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
12
|
Crown-ether-bridging bis-diphenylacrylonitrile macrocycle: The effective fluorescence sensor for oxytetracycline. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Duan N, Yang S, Tian H, Sun B. The recent advance of organic fluorescent probe rapid detection for common substances in beverages. Food Chem 2021; 358:129839. [PMID: 33940297 DOI: 10.1016/j.foodchem.2021.129839] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
The beverage industry is confronted with tremendous challenges in terms of quality assurance. The allowed contents of common ingredients such as copper ions, hydrogen sulfide, cysteine and caffeine are stipulated by various governing bodies, and the beverage industry must ensure that it meets these requirements. Due to its unique advantages of high sensitivity, low cost and relatively low toxicity over high-performance liquid chromatography, atomic absorption spectrometry and nanomaterials, the use of organic fluorescent probes for the rapid detection of beverage contents has become a hot research topic. This review summarizes the detection of common substances in wine, tea, mineral water, milk and other beverages. Furthermore, the preparation of test paper and simple colour comparison are discussed to display the rapid qualitative capability of designed probes. To improve the current state of beverage safety, future trends and strategies for fast organic fluorescent probe detection in the beverage industry are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
14
|
The research progress of organic fluorescent probe applied in food and drinking water detection. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213557] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Chen Y, Liu G, Wang X, Lu X, Xu N, Chang Z, Zhang Z, Li X. Various carboxylates induced eight Zn( ii)/Cd( ii) coordination polymers with fluorescence sensing activities for Fe( iii), Cr( vi) and oxytetracycline. CrystEngComm 2021. [DOI: 10.1039/d1ce01166a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Eight new Zn(ii)/Cd(ii) coordination polymers constructed from a naphthalene-amide-pyridyl ligand and various carboxylates were synthesized and characterized, which show multifunctional fluorescence responses for cations, anions and antibiotics.
Collapse
Affiliation(s)
- Yaxuan Chen
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center for Conversion Materials of Solar Cell of Liaoning Province, Bohai University, Jinzhou, 121013, P. R. China
| | - Guocheng Liu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center for Conversion Materials of Solar Cell of Liaoning Province, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center for Conversion Materials of Solar Cell of Liaoning Province, Bohai University, Jinzhou, 121013, P. R. China
| | - Xue Lu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center for Conversion Materials of Solar Cell of Liaoning Province, Bohai University, Jinzhou, 121013, P. R. China
| | - Na Xu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center for Conversion Materials of Solar Cell of Liaoning Province, Bohai University, Jinzhou, 121013, P. R. China
| | - Zhihan Chang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center for Conversion Materials of Solar Cell of Liaoning Province, Bohai University, Jinzhou, 121013, P. R. China
| | - Zhong Zhang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center for Conversion Materials of Solar Cell of Liaoning Province, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiaohui Li
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center for Conversion Materials of Solar Cell of Liaoning Province, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
16
|
Si XJ, Wang HL, Wu TH, Wang P. Novel methods for the rapid detection of trace tetracyclines based on the fluorescence behaviours of Maillard reaction fluorescent nanoparticles. RSC Adv 2020; 10:43256-43261. [PMID: 35519723 PMCID: PMC9058211 DOI: 10.1039/d0ra05298a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022] Open
Abstract
The Maillard reaction and its fluorescent products have attracted widespread attention in the field of food safety and biology. Herein, the novel Maillard reaction fluorescent nanoparticles (MRFNs) as a fluorescent probe were synthesized via a “green” method with simple technical processes. In addition, the effects of tetracycline (TC) and chlorotetracycline (CTC) representing certain properties of tetracyclines (TCs) on the fluorescence behaviour of MRFNs were studied, respectively. The present study showed that the fluorescence intensity of MRFNs greatly enhanced with a linear increase in the CTC concentration. However, with the gradual increase in the TC concentration, the intensity of MRFNs tended to significantly decrease linearly. Based on this, novel fluorescence analysis methods for the simple and rapid detection of TC and CTC in water bodies were established, respectively. Significantly, the proposed detection methods were successfully adopted for detecting TC and CTC in some environmental water samples. Besides, the possible mechanisms for TC-induced fluorescence quenching and CTC-induced fluorescence enhancement of MRFNs were also discussed, respectively. The Maillard reaction and its fluorescent products have attracted widespread attention in the field of food safety and biology.![]()
Collapse
Affiliation(s)
- Xue-Jing Si
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou 325035 China +86-577-86689745 +86-577-86689949
| | - Hong-Ling Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou 325035 China +86-577-86689745 +86-577-86689949
| | - Tun-Hua Wu
- School of Information Engineering, Wenzhou Business College Wenzhou 325035 China
| | - Ping Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou 325035 China +86-577-86689745 +86-577-86689949
| |
Collapse
|
17
|
Green Preparation of Fluorescent Nitrogen-Doped Carbon Quantum Dots for Sensitive Detection of Oxytetracycline in Environmental Samples. NANOMATERIALS 2020; 10:nano10081561. [PMID: 32784490 PMCID: PMC7466531 DOI: 10.3390/nano10081561] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Nitrogen-doped carbon quantum dots (N-CQDs) with strong fluorescence were prepared by a one-step hydrothermal method using natural biomass waste. Two efficient fluorescent probes were constructed for selective and sensitive detection of oxytetracycline (OTC). The synthesized N-CQDs were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FT-IR), X-ray photon spectroscopy (XPS), atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HRTEM), which proved that the synthesized N-CQDs surface were functionalized and had stable fluorescence performance. The basis of N-CQDs detection of OTC was discussed, and various reaction conditions were studied. Under optimized conditions, orange peel carbon quantum dots (ON-CQDs) and watermelon peel carbon quantum dots (WN-CQDs) have a good linear relationship with OTC concentrations in the range of 2-100 µmol L-1 and 0.25-100 µmol L-1, respectively. ON-CQDs and WN-CQDs were both successfully applied in detecting the OTC in pretreated tap water, lake water, and soil, with the recovery rate at 91.724-103.206%, and the relative standard deviation was less than 5.35%. The results showed that the proposed N-CQDs proved to be green and simple, greatly reducing the detection time for OTC in the determination environment.
Collapse
|
18
|
Moreira B, Armstrong T, Batista ICA, Clemente Tavares N, Pires CV, de Moraes Mourão M, Falcone FH, Dekker LV. Use of BODIPY-Labeled ATP Analogues in the Development and Validation of a Fluorescence Polarization-Based Assay for Screening of Kinase Inhibitors. ACS OMEGA 2020; 5:9064-9070. [PMID: 32363258 PMCID: PMC7191558 DOI: 10.1021/acsomega.9b03344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/10/2020] [Indexed: 05/14/2023]
Abstract
The screening of compound libraries to identify small-molecule modulators of specific biological targets is crucial in the process for the discovery of novel therapeutics and molecular probes. Considering the need for simple single-tool assay technologies with which one could monitor "all" kinases, we developed a fluorescence polarization (FP)-based assay to monitor the binding capabilities of protein kinases to ATP. We used BODIPY ATP-y-S as a probe to measure the shift in the polarization of a light beam when passed through the sample. We were able to optimize the assay using commercial Protein Kinase A (PKA) and H7 efficiently inhibited the binding of the probe when added to the reaction. Furthermore, we were able to employ the assay in a high-throughput fashion and validate the screening of a set of small molecules predicted to dock into the ATP-binding site of PKA. This will be useful to screen larger libraries of compounds that may target protein kinases by blocking ATP binding.
Collapse
Affiliation(s)
- Bernardo
Pereira Moreira
- Biomedizinisches
Forschungszentrum Seltersberg, Institut für Parasitologie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
- Instituto
de Pesquisas René Rachou, Fundação
Oswaldo Cruz—FIOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
- School
of Pharmacy, Division of Molecular Therapeutics and Formulation, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Tom Armstrong
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Izabella Cristina Andrade Batista
- Instituto
de Pesquisas René Rachou, Fundação
Oswaldo Cruz—FIOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
- School
of Pharmacy, Division of Molecular Therapeutics and Formulation, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Naiara Clemente Tavares
- Instituto
de Pesquisas René Rachou, Fundação
Oswaldo Cruz—FIOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
- School
of Pharmacy, Division of Molecular Therapeutics and Formulation, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Camilla Valente Pires
- Instituto
de Pesquisas René Rachou, Fundação
Oswaldo Cruz—FIOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
- School
of Pharmacy, Division of Molecular Therapeutics and Formulation, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Marina de Moraes Mourão
- Instituto
de Pesquisas René Rachou, Fundação
Oswaldo Cruz—FIOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
| | - Franco H. Falcone
- Biomedizinisches
Forschungszentrum Seltersberg, Institut für Parasitologie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
- School
of Pharmacy, Division of Molecular Therapeutics and Formulation, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Lodewijk V. Dekker
- School
of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
19
|
Meng L, Lan C, Liu Z, Xu N, Wu Y. A novel ratiometric fluorescence probe for highly sensitive and specific detection of chlorotetracycline among tetracycline antibiotics. Anal Chim Acta 2019; 1089:144-151. [PMID: 31627811 DOI: 10.1016/j.aca.2019.08.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022]
Abstract
It is of great importance to detect chlorotetracycline (CTC) in a highly sensitive and specific way because of its wide distribution in aquaculture and animal husbandry. Herein, we propose a novel ratiometric fluorescence strategy to assay CTC by using bovine serum albumin stabilized gold nanoclusters (BSA-AuNCs). The BSA-AuNCs consisting of 25 gold atoms (Au25NCs) display a red emission at 640 nm (λex = 370 nm). In the presence of CTC, a new blue emission at 425 nm is emerged and its intensity dramatically increases with the addition of more the analyte; meanwhile the red emission at 640 nm shows a linear decrease reversely. However, at identical conditions neither the analogues of CTC as tetracycline (TC), oxytetracycline (OTC) or doxycycline (DC) induces similar response of BSA-AuNCs. Such interesting phenomenon is proven related to the conversion from large Au25NCs to smaller nanoclusters composing 8 gold atoms (Au8NCs), which intrinsically originate from the interaction between CTC and the ligand BSA. Therefore, a ratiometric probe is established to sensitively detect CTC in the wide range (0.2-10 μM) with a low limit of detection (LOD) at 65 nM. In addition, this strategy can also be applied to assay CTC in human serum, showing great promise for practical applications in future.
Collapse
Affiliation(s)
- Lei Meng
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China; College of Mechanical and Electrical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Chengwu Lan
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Zhonghu Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Na Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China; College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
20
|
Lv J, Chen X, Chen S, Li H, Deng H. A visible light induced ultrasensitive photoelectrochemical sensor based on Cu3Mo2O9/BaTiO3 p–n heterojunction for detecting oxytetracycline. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Yu L, Chen H, Yue J, Chen X, Sun M, Tan H, Asiri AM, Alamry KA, Wang X, Wang S. Metal–Organic Framework Enhances Aggregation-Induced Fluorescence of Chlortetracycline and the Application for Detection. Anal Chem 2019; 91:5913-5921. [DOI: 10.1021/acs.analchem.9b00319] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Long Yu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hongxia Chen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ji Yue
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xinfeng Chen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Mingtai Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Hua Tan
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A. Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Suhua Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Xing‐yu L, Jiang‐ning G, Mao D, Di W, Zhuo C, Pin‐hua X, Xiao‐jian G, Qin D, Zhi‐hui S, Xue‐mei Y, Ru‐qing T, Cai‐yun J. Determination of oxytetracycline hydrochloride in milk and egg white samples using Ru(bipy)
3
2+
–Ce(SO
4
)
2
chemiluminescence. LUMINESCENCE 2019; 34:316-323. [DOI: 10.1002/bio.3609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/29/2018] [Accepted: 01/06/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Long Xing‐yu
- School of Chemistry and Materials ScienceGuizhou Normal University Guiyang China
- Journal Editorial DepartmentGuizhou Normal University Guiyang China
| | - Gong Jiang‐ning
- School of Chemistry and Materials ScienceGuizhou Normal University Guiyang China
| | - Deng Mao
- Ecological Environmental Monitoring Station of Qianjiang District in Chongqing Chongqing China
| | - Wu Di
- Key Laboratory of Mountain and Environment of Guizhou ProvinceGuizhou Normal University Guiyang China
| | - Chen Zhuo
- School of Chemistry and Materials ScienceGuizhou Normal University Guiyang China
| | - Xia Pin‐hua
- Key Laboratory of Mountain and Environment of Guizhou ProvinceGuizhou Normal University Guiyang China
| | - Gong Xiao‐jian
- Key Laboratory of Mountain and Environment of Guizhou ProvinceGuizhou Normal University Guiyang China
| | - Deng Qin
- Key Laboratory of Mountain and Environment of Guizhou ProvinceGuizhou Normal University Guiyang China
| | - Shi Zhi‐hui
- School of Chemistry and Materials ScienceGuizhou Normal University Guiyang China
| | - Yan Xue‐mei
- School of Chemistry and Materials ScienceGuizhou Normal University Guiyang China
| | - Tian Ru‐qing
- School of Chemistry and Materials ScienceGuizhou Normal University Guiyang China
| | - Jiang Cai‐yun
- School of Engineering and TechnologyJiangsu Vocational Institute of Commerce Nanjing China
| |
Collapse
|
23
|
El-Ali HAA, Jing J, Zhang X. Solid-state emissive O-BODIPY dyes with bimodal emissions across red and near infrared region. RSC Adv 2019; 9:16246-16251. [PMID: 35521420 PMCID: PMC9064346 DOI: 10.1039/c8ra10296a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/27/2019] [Indexed: 12/15/2022] Open
Abstract
Fluorescent compounds with solid-state emission are expected to have broad applications in the development of optoelectronic devices. In this study, we develop O-BODIPY based fluorescent dyes which exhibit strong bimodal solid-state emissions across red and NIR regions. After one pot synthesis, samples are characterized by X-ray diffraction, cyclic voltammetry, UV-vis absorption, and fluorescence spectra. All the experimental data reveal the multiple excitation and efficient emission features in the aggregation states. Furthermore, the two produced probes can be successfully applied for tracking lysosomes in HeLa cells with low cytotoxicity. We develop O-BODIPY based fluorescent probes which exhibit strong bimodal solid-state emissions across red and NIR regions, tracking lysosomes in HeLa cells with low cytotoxicity.![]()
Collapse
Affiliation(s)
- H. A. Abdulhadi El-Ali
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| |
Collapse
|
24
|
Liu H, Ding L, Chen L, Chen Y, Zhou T, Li H, Xu Y, Zhao L, Huang N. A facile, green synthesis of biomass carbon dots coupled with molecularly imprinted polymers for highly selective detection of oxytetracycline. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Merey HA, Abd-Elmonem MS, Nazlawy HN, Zaazaa HE. Spectrophotometric Methods for Simultaneous Determination of Oxytetracycline HCl and Flunixin Meglumine in Their Veterinary Pharmaceutical Formulation. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:2321572. [PMID: 28811956 PMCID: PMC5546081 DOI: 10.1155/2017/2321572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Four precise, accurate, selective, and sensitive UV-spectrophotometric methods were developed and validated for the simultaneous determination of a binary mixture of Oxytetracycline HCl (OXY) and Flunixin Meglumine (FLU). The first method, dual wavelength (DW), depends on measuring the difference in absorbance (ΔA 273.4-327 nm) for the determination of OXY where FLU is zero while FLU is determined at ΔA 251.7-275.7 nm. The second method, first-derivative spectrophotometric method (1D), depends on measuring the peak amplitude of the first derivative selectively at 377 and 266.7 nm for the determination of OXY and FLU, respectively. The third method, ratio difference method, depends on the difference in amplitudes of the ratio spectra at ΔP 286.5-324.8 nm and ΔP 249.6-286.3 nm for the determination of OXY and FLU, respectively. The fourth method, first derivative of ratio spectra method (1DD), depends on measuring the amplitude peak to peak of the first derivative of ratio spectra at 296.7 to 369 nm and 259.1 to 304.7 nm for the determination of OXY and FLU, respectively. Different factors affecting the applied spectrophotometric methods were studied. The proposed methods were validated according to ICH guidelines. Satisfactory results were obtained for determination of both drugs in laboratory prepared mixture and pharmaceutical dosage form. The developed methods are compared favourably with the official ones.
Collapse
Affiliation(s)
- Hanan A. Merey
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo 11562, Egypt
| | - Mahmmoud S. Abd-Elmonem
- National Organization for Drug Control and Research (NODCAR), 6 Abu Hazem Street, Pyramids Ave., P.O. Box 29, Giza, Egypt
| | - Hagar N. Nazlawy
- National Organization for Drug Control and Research (NODCAR), 6 Abu Hazem Street, Pyramids Ave., P.O. Box 29, Giza, Egypt
| | - Hala E. Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo 11562, Egypt
| |
Collapse
|
26
|
Xie Y, Zhang L, Yang X, Le T. Development of a quantum dot-based immunochromatography test strip for rapid screening of oxytetracycline and 4-epi-oxytetracycline in edible animal tissues. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:371-378. [PMID: 28110635 DOI: 10.1080/19440049.2016.1277038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A rapid and sensitive immunochromatographic test strip (ICTS) was developed in a competitive format with the quantum dot-conjugated monoclonal antibody specifically to determine the residues of oxytetracycline (OTC) and its metabolite 4-epi-oxytetracycline (4-epi-OTC). Using an ICTS reader, the 50% inhibition concentration (IC50) was found to be 3.41 ± 0.29 ng ml-1 of OTC in phosphate-buffered saline samples and the detection limit was 0.44 ± 0.05 ng ml-1. The visual cut-off level of the ICTS is 25 ng ml-1. The recoveries from tissue samples spiked with OTC of 50-600 μg kg-1 were 74.2-107.2%, with coefficients of variation below 15%. The method was used to analyse incurred tissue samples, and there was good correlation (R2 = 0.999) between the ICTS and high-performance liquid chromatography. These results indicate that ICTS is suitable for the rapid and quantitative detection of OTC and 4-epi-OTC residues in edible animal tissues.
Collapse
Affiliation(s)
- Yong Xie
- a College of Life Science , Chongqing Normal University , Chongqing , China.,b Department of Animation , Chongqing College of Electronic Engineering , Chongqing , China
| | - Lei Zhang
- a College of Life Science , Chongqing Normal University , Chongqing , China
| | - Xian Yang
- a College of Life Science , Chongqing Normal University , Chongqing , China
| | - Tao Le
- a College of Life Science , Chongqing Normal University , Chongqing , China
| |
Collapse
|
27
|
Xu N, Yuan Y, Yin JH, Wang X, Meng L. One-pot hydrothermal synthesis of luminescent silicon-based nanoparticles for highly specific detection of oxytetracycline via ratiometric fluorescent strategy. RSC Adv 2017. [DOI: 10.1039/c7ra09338a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amino groups terminated luminescent SiNPs have been designed for ratiometric visual detection of OTC in vitro and milk samples.
Collapse
Affiliation(s)
- Na Xu
- College of Materials Science and Engineering
- Jilin Institute of Chemical Technology
- Jilin 132022
- China
| | - Yaqing Yuan
- College of Materials Science and Engineering
- Jilin Institute of Chemical Technology
- Jilin 132022
- China
| | - Jian-Hang Yin
- College of Materials Science and Engineering
- Jilin Institute of Chemical Technology
- Jilin 132022
- China
| | - Xue Wang
- College of Materials Science and Engineering
- Jilin Institute of Chemical Technology
- Jilin 132022
- China
| | - Lei Meng
- College of Materials Science and Engineering
- Jilin Institute of Chemical Technology
- Jilin 132022
- China
- College of Science
| |
Collapse
|