1
|
Parekh JN, Patel MS, Chudasama DD, Patel HC, Sutariya PG, Soni HN, Rajput CV, Ram KR. Meglumine-based Sustainable Three-component Deep Eutectic Solvent Applicable for the Synthesis of Pyrazolo[5,1-b]quinazoline-3-carboxylates as a Sensing Probe for Cu 2+ Ions. Chem Asian J 2024:e202301116. [PMID: 38303566 DOI: 10.1002/asia.202301116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
An unprecedented meglumine-based three-component deep eutectic solvent (3c-DES) (MegPAc) was synthesized using meglumine, p-toluenesulfonic acid (PTSA), and acetic acid as a renewable, and non-toxic solvent. The exploitation of the MegPAc as an eco-friendly reaction media to construct a selective and sensitive small organic molecular sensing probe, namely, pyrazolo[5,1-b]quinazoline-3-carboxylates (PQCs) was executed. Captivatingly, the MegPAc served the dual role of solvent and catalyst, and it delivered the title components with 69-94 % yields within 67-150 minutes. Furthermore, a UV-visible study unfolds the selective detection of Cu2+ ions with our synthetic probe 4 ba and resulted in hypsochromic shift due to electrostatic interactions. Additionally, 1 H NMR titration study and density functional theory (DFT) calculations were performed to attest the binding mechanism of sensing probe 4 ba and Cu2+ ions. Worthy of mention, this protocol unveils the efficacy of meglumine-based 3c-DES for the first time as a bio-renewable system to synthesize the PQCs.
Collapse
Affiliation(s)
- Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Dipakkumar D Chudasama
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Pinkesh G Sutariya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Heni N Soni
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Chetan V Rajput
- School of Sciences, National Institute of Science Education and Research, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| |
Collapse
|
2
|
Bouone YO, Bouzina A, Sayad R, Djemel A, Benaceur F, Zoukel A, Ibrahim-Ouali M, Aouf NE, Bouchareb F. BiCl 3-catalyzed green synthesis of 4-hydroxy-2-quinolone analogues under microwave irradiation. RSC Adv 2023; 13:28030-28041. [PMID: 37746335 PMCID: PMC10517106 DOI: 10.1039/d3ra05289c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023] Open
Abstract
Traditional chemical synthesis, which involves the use of dangerous protocols, hazardous solvents, and toxic products and catalysts, is considered environmentally inappropriate and harmful to human health. Bearing in mind its numerous drawbacks, it has become crucial to substitute conventional chemistry with green chemistry which is safer, more ecofriendly and more effective in terms of time and selectivity. Elaborating synthetic protocols producing interesting new compounds using both microwave heating and heterogeneous non-toxic catalysts is acknowledged as a green approach that avoids many classical chemistry-related problems. In the current study, β-enaminones were used as precursors to the synthesis of modified 4-hydroxy-2-quinolone analogues. The synthesis was monitored in a benign way under microwave irradiation and was catalyzed by bismuth chloride III in an amount of 20 mol%. This method is privileged by using a non-corrosive, non-toxic, low-cost and available bismuth Lewis acid catalyst that has made it more respectful to the demands of green chemistry. The synthesized compounds were obtained in moderate to good yields (51-71%) and were characterized by 1H, 13C NMR, and IR spectroscopy as well as elemental analysis. Compound 5i was subjected to a complete structural elucidation using the X-ray diffraction method, and the results show the obtention of the enolic tautomeric form.
Collapse
Affiliation(s)
- Yousra Ouafa Bouone
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
| | - Abdeslem Bouzina
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
| | - Rayene Sayad
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
| | - Abdelhak Djemel
- Research Unit in Medicinal Plants, URPM, Research Center of Biotechnology, CRBt 3000 Laghouat 25000 Constantine Algeria
| | - Farouk Benaceur
- Research Unit in Medicinal Plants, URPM, Research Center of Biotechnology, CRBt 3000 Laghouat 25000 Constantine Algeria
| | - Abdelhalim Zoukel
- Technical Platform of Physico-Chemical Analysis (PTAPC-Laghout-CRAPC), University of Laghouat Laghouat 03000 Algeria
| | | | - Nour-Eddine Aouf
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
| | - Fouzia Bouchareb
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
- Faculty of Sciences and Technology, Department of Chemistry, Chadli Bendjedid - EL Tarf University P.O. Box: 73 El Tarf 36000 Algeria
| |
Collapse
|
3
|
Parvin T. Multicomponent Reactions Using C,N-Binucleophilic Nature of Aminopyrazoles: Construction of Pyrazole-Fused Heterocycles. Top Curr Chem (Cham) 2023; 381:19. [PMID: 37237061 DOI: 10.1007/s41061-023-00427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023]
Abstract
Synthesis of pyrazole-fused heterocycles has gained considerable attention in recent years due to their wide applications in medicinal chemistry. Aminopyrazoles are versatile building blocks for the synthesis of pyrazole-fused heterocycles by multicomponent reactions. Due to the presence of multiple reaction sites, they have fascinating chemical reactivity. Thus, they have been extensively used in multicomponent reactions for the construction of pyrazole-fused heterocycles. Although few review articles on the preparation and applications of aminopyrazoles are known in the literature, to date there is no dedicated review article on the construction of pyrazole-fused heterocycles exploring the reactivity of amino pyrazoles as C,N-binucleophiles in multicomponent reactions. Considering this, herein the multicomponent reactions for the construction of pyrazole-fused heterocycles exploring C,N-binucleophilic nature of amino pyrazoles have been reported.
Collapse
Affiliation(s)
- Tasneem Parvin
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna, 800005, India.
| |
Collapse
|
4
|
Mahdipour P, Moradi L, Mirzaie M. Green Synthesis of Dihydropyrimido[4,5‐b]quinolinetriones by Sulfonic Acid‐Functionalized Silica‐Coated CoFe
2
O
4
as a Solid Acid Nanocatalyst under Thermal and Ultrasonic Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202203824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pegah Mahdipour
- Department of Organic Chemistry Faculty of Chemistry University of Kashan P.O. Box 8731753153 Kashan I. R. Iran 8731753153
| | - Leila Moradi
- Department of Organic Chemistry Faculty of Chemistry University of Kashan P.O. Box 8731753153 Kashan I. R. Iran 8731753153
| | | |
Collapse
|
5
|
Zadeh MMA, Rostami E, Farhadi A. An Extremely Productive and Sustainable Procedure for the Synthesis of 2,4,5-Trisubstituted Imidazoles Using Graphene Oxide-Substituted Sulfoacetic Acid Amide. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Nayamadi Mahmoodabadi M, Akhlaghinia B. A green methodology for C–S cross-coupling reaction over Cu II attached to magnetic natural talc (γ-Fe 2O 3/talc/Cu II NPs) as a heterogeneous and ligand-free catalyst. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
| | - Batool Akhlaghinia
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Recent Advances in Synthesis and Properties of Pyrazoles. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyrazole-containing compounds represent one of the most influential families of N-heterocycles due to their proven applicability and versatility as synthetic intermediates in preparing relevant chemicals in biological, physical-chemical, material science, and industrial fields. Therefore, synthesizing structurally diverse pyrazole derivatives is highly desirable, and various researchers continue to focus on preparing this functional scaffold and finding new and improved applications; this review highlights some of the most recent and strategic examples regarding the synthesis and properties of different pyrazole derivatives, mainly reported from 2017–present. The discussion involves strategically functionalized rings (i.e., amines, carbaldehydes, halides, etc.) and their use in forming various fused systems, predominantly bicyclic cores with 5:6 fusion taking advantage of our experience in this field and the more recent investigations of our research group.
Collapse
|
8
|
Design, preparation and application of the semicarbazide-pyridoyl-sulfonic acid-based nanocatalyst for the synthesis of pyranopyrazoles. Sci Rep 2022; 12:14347. [PMID: 35999336 PMCID: PMC9399233 DOI: 10.1038/s41598-022-18651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
A novel, efficient, and recoverable nanomagnetic catalyst bearing the semicarbazide linkers, namely, Fe3O4@SiO2@OSi(CH2)3-N(3-pyridoyl sulfonic acid)semicarbazide (FSiPSS) was designed, synthesized and characterized by the use of various techniques such as FT-IR, EDX, elemental mapping analysis, XRD, SEM, TEM, TGA/DTA, BET, and VSM. Then, the catalytic capability of the novel prepared nanomagnetic FSiPSS catalyst was successfully investigated in the synthesis of diverse pyranopyrazoles through a one-pot four-component condensation reaction of ethyl acetoacetate, hydrazine hydrate, aromatic aldehydes, and malononitrile or ethyl cyano-acetate by the help of ultrasonication in very short reaction time, good to high yields and easy work-up (Fig. 1). Figure 1 Synthesis of diverse pyranopyrazoles by the FSiPSS nano-catalyst.
Collapse
|
9
|
Nanomagnetic Salamo-based-Pd(0) Complex: an efficient heterogeneous catalyst for Suzuki–Miyaura and Heck cross-coupling reactions in aqueous medium. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Experimental and numerical study on smectic aligned zirconium phosphate decorated graphene oxide hybrids effects over waterborne epoxy multi-functional properties enhancement. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Datta K, Mitra B, Sharma BS, Ghosh P. One‐pot Three‐component Solvent‐free Tandem Annulations for Synthesis of Tetrazolo[1,2‐
a
]pyrimidine and [1,2,4]triazolo[1,5‐
a
]pyrimidine. ChemistrySelect 2022. [DOI: 10.1002/slct.202103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kumaresh Datta
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Bijeta Mitra
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Biswajit Shil Sharma
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Pranab Ghosh
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| |
Collapse
|
12
|
Photocurable Coatings Based on Bio-Renewable Oligomers and Monomers. MATERIALS 2021; 14:ma14247731. [PMID: 34947325 PMCID: PMC8708715 DOI: 10.3390/ma14247731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Due to long-term problems related to environmental protection, economic aspects, and waste management in the chemical industry, it is justified to develop renewable polymers as an alternative to synthetic polymers. Two kinds of acrylic bio-renewable components were used for the modification of acrylated epoxidized soybean oil (AESO). The bio-based compositions used as photocurable binders to obtain the photocurable coatings with satisfactory properties and high bio content were then prepared. The kinetic of curing reaction of the oligomers and monomers towards radical photopolymerization and the properties of the cured coatings were fully investigated; the results are discussed in relation with the compounds’ structures. Important information about how to design and obtain renewable photocurable coatings with satisfactory properties was provided in this study. In this study, AESO resin was modified with renewable oligomer or (math)acrylate monomer to increase the reactivity and reduce the viscosity of the photoreactive system in order to obtain renewable and viable alternatives to petroleum-based polymeric materials with perfect film-forming properties. It turned out that both photopolymerization rate and hardness of cured coatings were increased significantly with the addition of modifiers; the use of a thiol modifier and change of the photoinitiator concentration allowed to improve the adhesion, hardness, and control of the photo-curing process.
Collapse
|
13
|
Catalytic Application of Ceric Ammonium Nitrate-Stabilized Maghemite Nanoparticles (CAN-γ-Fe2O3) for Ultrasound Assisted Synthesis of β-Amino Derivatives. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Majidi Arlan F, Poursattar Marjani A, Javahershenas R, Khalafy J. Recent developments in the synthesis of polysubstituted pyridines via multicomponent reactions using nanocatalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj01801a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review describes the evolution and application of active metal-based and heterometallic NPs as efficient heterogeneous catalysts for the synthesis of pyridine derivatives by multicomponent reactions in the last decade (2010–2020).
Collapse
Affiliation(s)
| | | | - Ramin Javahershenas
- Department of Organic Chemistry
- Faculty of Chemistry
- Urmia University
- Urmia
- Iran
| | - Jabbar Khalafy
- Department of Organic Chemistry
- Faculty of Chemistry
- Urmia University
- Urmia
- Iran
| |
Collapse
|
15
|
Azimzadeh-Sadeghi S, Yavari I. Choline chloride/pentaerythritol: a deep eutectic solvent for the synthesis of pyran and chromene derivatives. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02108-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Ghobadi M, Kargar Razi M, Javahershenas R, Kazemi M. Nanomagnetic reusable catalysts in organic synthesis. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1819328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Massoud Ghobadi
- Central Laboratory, llam Petro Chemical Complex (ILPC), Chavar, Ilam, Iran
| | - Maryam Kargar Razi
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| | - Ramin Javahershenas
- Organic Chemistry Department, Chemistry Faculty, Urmia University, Urmia, Iran
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
17
|
Saranya S, Aneeja T, Neetha M, Anilkumar G. Recent advances in the iron‐catalysed multicomponent reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Salim Saranya
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| |
Collapse
|
18
|
Dhameliya TM, Donga HA, Vaghela PV, Panchal BG, Sureja DK, Bodiwala KB, Chhabria MT. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Adv 2020; 10:32740-32820. [PMID: 35516511 PMCID: PMC9056690 DOI: 10.1039/d0ra02272a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Heterocycles have been found to be of much importance as several nitrogen- and oxygen-containing heterocycle compounds exist amongst the various USFDA-approved drugs. Because of the advancement of nanotechnology, nanocatalysis has found abundant applications in the synthesis of heterocyclic compounds. Numerous nanoparticles (NPs) have been utilized for several organic transformations, which led us to make dedicated efforts for the complete coverage of applications of metal nanoparticles (MNPs) in the synthesis of heterocyclic scaffolds reported from 2010 to 2019. Our emphasize during the coverage of catalyzed reactions of the various MNPs such as Ag, Au, Co, Cu, Fe, Ni, Pd, Pt, Rh, Ru, Si, Ti, and Zn has not only been on nanoparticles catalyzed synthetic transformations for the synthesis of heterocyclic scaffolds, but also provide an inherent framework for the reader to select a suitable catalytic system of interest for the synthesis of desired heterocyclic scaffold.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Hiren A Donga
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Punit V Vaghela
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Bhoomi G Panchal
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Dipen K Sureja
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Kunjan B Bodiwala
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Mahesh T Chhabria
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| |
Collapse
|
19
|
Lončarić M, Sušjenka M, Molnar M. An Extensive Study of Coumarin Synthesis via Knoevenagel Condensation in Choline Chloride Based Deep Eutectic Solvents. Curr Org Synth 2020; 17:98-108. [PMID: 32418515 DOI: 10.2174/1570179417666200116155704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023]
Abstract
AIM AND OBJECTIVE In order to preserve the environment from harmful organic solvents, a synthesis of coumarin derivatives was performed in deep eutectic solvents, which are considered as "green" due to their characteristics. MATERIALS AND METHODS Choline chloride based deep eutectic solvents (DESs) were employed, both as solvents and as catalysts, in the synthesis of coumarin derivatives via Knoevenagel condensation. In order to find the best DES for coumarin synthesis, 20 DESs were tested for the reaction of salicylaldehyde and dimethyl malonate at 80 °C. RESULTS Among the twenty tested deep eutectic solvents only five were adequate for this kind of synthesis. The best DES for this reaction was found to be the one composed of choline chloride:urea (1:2). Most coumarin compounds were obtained in good to excellent yield. Compounds 1g, 2g and 2p should be pointed out due to their yields of 85, 88 and 98 %, respectively. 3-Acetylcoumarins 5a, 5c, 5d, 5e, 5f and 5g were synthesized under ultrasound irradiation and were also obtained in excellent yields of 90, 95, 98, 93, 94 and 85 %, respectively. CONCLUSION Series of coumarin derivatives were successfully synthesized, either in choline chloide:urea DES at 80 °C or in ultrasound-assisted reaction, from different salicylaldehydes and active methylene compounds. These "green" methods were found to be very effective in Knoevenagel condensation, while DES was recycled for several cycles without any significant influence on the product yield.
Collapse
Affiliation(s)
- Melita Lončarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University o, Franje Kuhaca 18, 31000 Osijek, Croatia
| | - Martina Sušjenka
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University o, Franje Kuhaca 18, 31000 Osijek, Croatia
| |
Collapse
|
20
|
Alishahi N, Nasr‐Esfahani M, Mohammadpoor‐Baltork I, Tangestaninejad S, Mirkhani V, Moghadam M. Nicotine‐based ionic liquid supported on magnetic nanoparticles: An efficient and recyclable catalyst for selective one‐pot synthesis of
mono
‐ and
bis
‐4
H
‐pyrimido[2,1‐
b
]benzothiazoles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nasrin Alishahi
- Department of Chemistry, Catalysis Division University of Isfahan Isfahan 81746‐73441 Iran
| | | | | | | | - Valiollah Mirkhani
- Department of Chemistry, Catalysis Division University of Isfahan Isfahan 81746‐73441 Iran
| | - Majid Moghadam
- Department of Chemistry, Catalysis Division University of Isfahan Isfahan 81746‐73441 Iran
| |
Collapse
|
21
|
Tamaddon F, Khorram A. New magnetic-responsive deep eutectic catalyst based on Co2+/choline chloride for the synthesis of tetrahydro-pyrazolopyridines and pyrroles in water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Kazemi M. Based on MFe2O4 (M=Co, Cu, and Ni): Magnetically recoverable nanocatalysts in synthesis of heterocyclic structural scaffolds. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1723109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mosstafa Kazemi
- Chemistry Department, Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
23
|
Kharazmi A, Ghorbani‐Vaghei R, Alavinia S. Synthesis of Pyrimidine Derivatives Catalyzed by Nanomagnetic Pyridinium‐Tribromide Ionic Liquid. ChemistrySelect 2020. [DOI: 10.1002/slct.201904697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Azin Kharazmi
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| | - Ramin Ghorbani‐Vaghei
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| | - Sedigheh Alavinia
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
24
|
Rostamizadeh S, Daneshfar Z, Khazaei A. Ferric Sulfasalazine Sulfa Drug Complex Supported on Cobalt Ferrite Cellulose; Evaluation of Its Activity in MCRs. Catal Letters 2020. [DOI: 10.1007/s10562-020-03101-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Singhal A, Kumari P, Nisa K. Facile One-Pot Friedlander Synthesis of Functionalized Quinolines using Graphene Oxide Carbocatalyst. Curr Org Synth 2020; 16:154-159. [PMID: 31965929 DOI: 10.2174/1570179415666181002114621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/16/2018] [Accepted: 09/16/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quinolines represent an important class of bioactive molecules which are present in various synthetic drugs, biologically active natural compounds and pharmaceuticals. Quinolines find their potential applications in various chemical and biomedical fields. Thereby, the demand for more efficient and simple methodologies for the synthesis of quinolines is growing rapidly. OBJECTIVE The green one-pot Friedlander Synthesis of Functionalized Quinolines has been demonstrated by using graphene oxide as a carbocatalyst. METHOD The graphene oxide catalyzed condensation reaction of 2-aminoaryl carbonyl compounds with different cyclic/ acyclic/ aromatic carbonyl compounds in methanol at 70°C affords different quinoline derivatives. RESULTS The reaction has been examined in different protic and aprotic solvents and the best yield of quinoline is observed in methanol at 70°C. CONCLUSION The present method of quinoline synthesis offers various advantages over other reported methods such as short reaction time, high yield of product, recycling of catalyst and simple separation procedure. The graphene oxide carbocatalyst can be easily recovered from the reaction mixture by centrifugation and then can be reused several times without any significant loss in its activity.
Collapse
Affiliation(s)
- Anchal Singhal
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Kharu Nisa
- Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
26
|
Fe 3O 4@C@OSO 3H as an efficient, recyclable magnetic nanocatalyst in Pechmann condensation: green synthesis, characterization, and theoretical study. Mol Divers 2020; 25:67-86. [PMID: 31927717 DOI: 10.1007/s11030-019-10025-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Novel sulfonated carbon-coated magnetic nanoparticles (SCCMNPs; Fe3O4@C@OSO3H) were designed, synthesized, characterized, and applied as an efficient nanocatalyst for green synthesis of coumarin derivatives through Pechmann condensation. The Fe3O4@C@OSO3H was manufactured through a simple and inexpensive two-step procedure and characterized by FTIR, EDX, XRD, SEM, TEM, DLS, VSM, and TGA techniques. It was identified as an efficient heterogeneous catalyst in the Pechmann condensation of phenol derivatives and β-ketoesters, leading to high-yield coumarin derivatives under solvent-free conditions. The Fe3O4@C@OSO3H removed after reaction finishing point by an external magnet, and it was reused fifteen times at the same conditions. Besides, theoretical studies were carried out using B3LYP/6-311++G(d,p) to more consideration of the reaction mechanism. The study of the frontier molecular orbitals, NBO atomic charges, molecular electrostatic potential of reactants, as well as Pechmann condensation mechanism was known very useful in suitable reactant choice. The reaction was performed through the electrophilic attack, dehydration, and trans-esterification, respectively.
Collapse
|
27
|
Hamidinasab M, Bodaghifard MA, Mobinikhaledi A. Synthesis of new, vital and pharmacologically important bis phthalazine-triones using an efficient magnetic nanocatalyst and their HF and NBO investigation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Soni JP, Chemitikanti KS, Joshi SV, Shankaraiah N. The microwave-assisted syntheses and applications of non-fused single-nitrogen-containing heterocycles. Org Biomol Chem 2020; 18:9737-9761. [PMID: 33211792 DOI: 10.1039/d0ob01779e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microwave technology has emerged as a great tool for the efficient synthesis of organic compounds and it provides opportunities for chemists to achieve chemical transformations that tend to be challenging using classical approaches. Additionally, N-heterocycles are well-known for their medicinal/biological significance, along with their applications as excellent building blocks in chemical synthesis. The dominance of N-heterocycles in drug molecules and other pharmacological agents makes them attractive scaffolds, which encourages chemists to develop a wide range of strategies towards the greener synthesis and functionalization of these heterocycles. In this regard, we have collated and discussed literature relating to the microwave-assisted synthesis and the modification of non-(benzo)fused single-nitrogen-containing N-heterocycles from the past decade. The role of the microwave technique and its benefits over the conventional approach have also been emphasized in terms of overall reaction efficiency, reaction time, yield, reduced side-product generation, neat and clean reactions, chemo-/regio-/enantio-selectivity, and the use of mild reagents/reaction conditions to achieve the objectives of green and sustainable chemistry.
Collapse
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India.
| | | | | | | |
Collapse
|
29
|
Babaei E, Fatemeh Mirjalili BB. Fe3O4@nano-dextrin/Ti(IV): A unique and recyclable catalyst for aqueous pseudo-four-component reaction. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Ghasemzadeh MA, Mirhosseini-Eshkevari B, Abdollahi-Basir MH. Green synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazoles] using Fe 3O 4@l-arginine as a robust and reusable catalyst. BMC Chem 2019; 13:119. [PMID: 31624802 PMCID: PMC6787995 DOI: 10.1186/s13065-019-0636-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
The synthesized Fe3O4@l-arginine showed strong catalytic performance in the one-pot synthesis of spiropyranopyrazoles via the reactions of hydrazines, β-keto esters, isatins, and malononitrile or ethyl cyanoacetate under solvent-free conditions. The biologically active heterocyclic compounds including spiropyranopyrazole derivatives were efficiently synthesized in short reaction times and excellent yields in the presence of Fe3O4/l-arginine at room temperature. The highlighted features of the Fe3O4@l-arginine nanocomposite are highly stable, easy to separate, low loading, cost-effective with easy preparation and reusability of the catalyst. The heterogeneous nanocomposite was fully characterized by SEM, EDX, FT-IR, XRD and TEM analysis.
Collapse
Affiliation(s)
- Mohammad Ali Ghasemzadeh
- Department of Chemistry, Qom Branch, Islamic Azad University, Post Box: 37491-13191, Qom, Islamic Republic of Iran
| | - Boshra Mirhosseini-Eshkevari
- Department of Chemistry, Qom Branch, Islamic Azad University, Post Box: 37491-13191, Qom, Islamic Republic of Iran
| | | |
Collapse
|
31
|
|
32
|
Aghapoor K, Mohsenzadeh F, Darabi HR, Sayahi H, Jalali MR. ZnCl
2
/Urea Eutectic Solvent as Stable Carbonylation Source for Benign Synthesis of 2–Benzimidazolones and 2–Imidazolones: An Effective Strategy for Preventing NH
3
Gas Evolution. ChemistrySelect 2019. [DOI: 10.1002/slct.201902706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kioumars Aghapoor
- Applied Chemicals Synthesis Lab.Chemistry & Chemical Engineering Research Center of Iran Pajoohesh Blvd., km 17, Karaj Hwy Tehran 14968-13151 Iran
| | - Farshid Mohsenzadeh
- Applied Chemicals Synthesis Lab.Chemistry & Chemical Engineering Research Center of Iran Pajoohesh Blvd., km 17, Karaj Hwy Tehran 14968-13151 Iran
| | - Hossein Reza Darabi
- Applied Chemicals Synthesis Lab.Chemistry & Chemical Engineering Research Center of Iran Pajoohesh Blvd., km 17, Karaj Hwy Tehran 14968-13151 Iran
| | - Hani Sayahi
- Applied Chemicals Synthesis Lab.Chemistry & Chemical Engineering Research Center of Iran Pajoohesh Blvd., km 17, Karaj Hwy Tehran 14968-13151 Iran
| | - Mohammad Reza Jalali
- Applied Chemicals Synthesis Lab.Chemistry & Chemical Engineering Research Center of Iran Pajoohesh Blvd., km 17, Karaj Hwy Tehran 14968-13151 Iran
| |
Collapse
|
33
|
Rai VK, Verma F, Mahata S, Bhardiya SR, Singh M, Rai A. Metal Doped-C3N4/Fe2O4: Efficient and Versatile Heterogenous Catalysts for Organic Transformations. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190709113758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The polymeric graphitic carbon nitride (g-C3N4) has been one of the interesting earth abundant elements. Though g-C3N4 finds application as a photocatalyst, its photocatalytic behaviour is limited because of low efficiency, mainly due to rapid charge recombination. To overcome this problem, several strategies have been developed including doping of metal/non-metal in the cavity of g-C3N4. Moreover, the CoFe2O4 NPs have been used in many organic transformations because of its high surface area and easy separation due to its magnetic nature. This review describes the role of cobalt ferrite as magnetic nanoparticles and metal-doped carbon nitride as efficient heterogeneous catalysts for new carbon-carbon and carbon-hetero atom bond formation followed by heterocyclization. Reactions which involved new catalysts for selective activation of readily available substrates has been reported herein. Since nanoparticles enhance the reactivity of catalyst due to higher catalytic area, they have been employed in various reactions such as addition reaction, C-H activation reaction, coupling reaction, cyclo-addition reaction, multi-component reaction, ring-opening reaction, oxidation reaction and reduction reactions etc. The driving force for choosing this topic is based-on huge number of good publications including different types of spinels/metal doped-/graphitic carbon nitride reported in the literature and due to interest of synthetic community in recent years. This review certainly will represent the present status in organic transformation and for exploring further their catalytic efficiency to new organic transformations involving C-H activation reaction through coupling, cyclo-addition, multi-component, ring-opening, oxidation and reduction reactions.
Collapse
Affiliation(s)
- Vijai K. Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Fooleswar Verma
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Suhasini Mahata
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Smita R. Bhardiya
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Manorama Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Ankita Rai
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110027, India
| |
Collapse
|
34
|
Nguyen TT, Nguyen CT, Tran PH. Synthesis of a new series of 2-hydroxy-5-iodo- N'-(1-arylethylidene)benzohydrazides using a deep eutectic solvent as solvent/catalyst under sonication. Heliyon 2019; 5:e02353. [PMID: 31508526 PMCID: PMC6726719 DOI: 10.1016/j.heliyon.2019.e02353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/29/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
We report here the preparation of 2-hydroxy-5-iodo-N'-(1-arylethylidene)benzohydrazide compounds in good to excellent yields (83-98%) within a short reaction time (10-15 min), through a clean and efficient procedure. Seventeen new compounds were synthesized and fully characterized by FT-IR, NMR, and HRMS. The deep eutectic solvent can be recovered easily by phase extraction and can be reused up to several times without any significant loss of catalytic activity. Additionally, the method has a wide substrate scope and provides an accessible route for the large-scale direct synthesis of 2-hydroxy-5-iodo-N'-(1-arylethylidene)benzohydrazides.
Collapse
Affiliation(s)
- The Thai Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University, Ho Chi Minh City, 721337, Viet Nam
| | - Cong Tien Nguyen
- Faculty of Chemistry, University of Education, Ho Chi Minh City, 700000, Viet Nam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University, Ho Chi Minh City, 721337, Viet Nam
| |
Collapse
|
35
|
Application of immobilized sulfonic acid on the cobalt ferrite magnetic nanocatalyst (CoFe2O4@SiO2@SO3H) in the synthesis of spirooxindoles. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03928-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Magnetic calcined oyster shell functionalized with taurine immobilized on β-cyclodextrin (Fe3O4/COS@β-CD-SO3H NPs) as green and magnetically reusable nanocatalyst for efficient and rapid synthesis of spirooxindoles. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03860-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Kothandapani J, Ganesan SS. Concise Review on the Applications of Magnetically Separable Brønsted Acidic Catalysts. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190312152209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Magnetically separable Brønsted acidic catalysts combine the advantages of
high efficiency of homogeneous Brønsted acidic catalyst with the ease of magnetic
separation from the reaction medium. In addition to their ease of separation, the
magnetically separable Brønsted acidic catalysts also possess high stability towards air
and moisture, facile functionalization and tunable hydrophobic properties. This review
portrays the applications of sulfonic acid anchored γ -Fe2O3 or Fe3O4 nanoparticles,
magnetic core encapsulated acid functionalized silica or mesoporous nanoparticles,
functionalized ionic liquid coated acidic magnetically separable nanoparticles and
miscellaneous magnetically separable Brønsted acidic nanoparticles in diverse organic
transformations. In addition, the merits of magnetically separable Brønsted acid
nanocatalyst are also summarized and compared with the traditional homogeneous/heterogeneous Brønsted
acidic catalysts.
Collapse
Affiliation(s)
- Jagatheeswaran Kothandapani
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Subramaniapillai S. Ganesan
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
38
|
Meng J, Wang Y, Zhou Y, Chen J, Wei X, Ni R, Liu Z, Xu F. Development of different deep eutectic solvent aqueous biphasic systems for the separation of proteins. RSC Adv 2019; 9:14116-14125. [PMID: 35519299 PMCID: PMC9064010 DOI: 10.1039/c9ra00519f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/19/2019] [Indexed: 01/23/2023] Open
Abstract
In this work, aqueous biphasic systems (ABSs) formed by different deep eutectic solvents (DESs) were prepared and applied to extract proteins. The five kinds of DESs comprised amino acids and polyols ([amino acids][polyols]). They were combined with another DES resulting from tetrabutylammonium chloride and polypropylene glycol 400 ([TBAC][PPG400]) to form ABSs. The phase-forming abilities of [TBAC][PPG400]/[amino acids][polyols] were compared with those of [TBAC][PPG400]/amino acids and [TBAC][PPG400]/polyols. The results exhibited that the biphasic formation ability of [amino acids][polyols] lies between those of amino acids and polyols when [TBAC][PPG400] acts as the other phase in ABSs. The systems comprising [TBAC][PPG400] and [l-proline][xylitol] ([Pro][Xyl]) were further investigated to optimize the extraction performance. It was found that 97.30% chymotrypsin tended to distribute into the [Pro][Xyl]-rich phase under optimum conditions. The practical application of the system was demonstrated by the extraction of chymotrypsin from porcine pancreas. Besides, UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), and circular dichroism (CD) spectroscopy proved that the conformation of proteins remained unchanged during the extraction process. The extraction mechanism of the formation of DES-protein aggregates was investigated via conductivity, dynamic light scattering (DLS), and transmission electron microscopy (TEM). The overall results suggest that the DES/DES-based ABSs have outstanding potential in the green extraction of proteins.
Collapse
Affiliation(s)
- Jiaojiao Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Yigang Zhou
- Department of Microbiology, College of Basic Medicine, Central South University Changsha 410083 P. R. China
| | - Jing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Xiaoxiao Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Rui Ni
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Ziwei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Fangting Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| |
Collapse
|
39
|
An Effective One-Pot Access to 2-Amino-4H-benzo[b]pyrans and 1,4-Dihydropyridines via γ-Cyclodextrin-Catalyzed Multi-Component Tandem Reactions in Deep Eutectic Solvent. Catal Letters 2019. [DOI: 10.1007/s10562-019-02767-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Yadollahi M, Hamadi H, Nobakht V. Tandem magnetization and post-synthetic metal ion exchange of metal-organic framework: Synthesis, characterization and catalytic study. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mahtab Yadollahi
- Department of Chemistry, Faculty of Sciences; Shahid Chamran University of Ahvaz; Ahvaz Iran
| | - Hosein Hamadi
- Department of Chemistry, Faculty of Sciences; Shahid Chamran University of Ahvaz; Ahvaz Iran
| | - Valiollah Nobakht
- Department of Chemistry, Faculty of Sciences; Shahid Chamran University of Ahvaz; Ahvaz Iran
| |
Collapse
|
41
|
Zhang WH, Chen MN, Hao Y, Jiang X, Zhou XL, Zhang ZH. Choline chloride and lactic acid: A natural deep eutectic solvent for one-pot rapid construction of spiro[indoline-3,4′-pyrazolo[3,4-b]pyridines]. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Zare Fekri L, Darya-Laal AR. NiFe2O4@SiO2@amino Glucose Magnetic Nanoparticle as a Green, Effective and Magnetically Separable Catalyst for the Synthesis of Xanthene-ones under Solvent-free Condition. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2018.1559207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Kaur G, Devi P, Thakur S, Kumar A, Chandel R, Banerjee B. Magnetically Separable Transition Metal Ferrites: Versatile Heterogeneous Nano-Catalysts for the Synthesis of Diverse Bioactive Heterocycles. ChemistrySelect 2019. [DOI: 10.1002/slct.201803600] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry; Indus International University, V.P.O. Bathu, Distt. Una; Himachal Pradesh-174301 India
| | - Pooja Devi
- Department of Chemistry; Indus International University, V.P.O. Bathu, Distt. Una; Himachal Pradesh-174301 India
| | - Sheetal Thakur
- Department of Chemistry; Indus International University, V.P.O. Bathu, Distt. Una; Himachal Pradesh-174301 India
| | - Aman Kumar
- Department of Chemistry; Indus International University, V.P.O. Bathu, Distt. Una; Himachal Pradesh-174301 India
| | - Rajesh Chandel
- Department of Chemistry; Indus International University, V.P.O. Bathu, Distt. Una; Himachal Pradesh-174301 India
| | - Bubun Banerjee
- Department of Chemistry; Indus International University, V.P.O. Bathu, Distt. Una; Himachal Pradesh-174301 India
| |
Collapse
|
44
|
New magnetic nanocatalyst containing a bis-dicationic ionic liquid framework for Knoevenagel condensation reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03747-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Synthesis and characterization of an acidic nanostructure based on magnetic polyvinyl alcohol as an efficient heterogeneous nanocatalyst for the synthesis of α-aminonitriles. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
46
|
Neysi M, Zarnegaryan A, Elhamifar D. Core–shell structured magnetic silica supported propylamine/molybdate complexes: an efficient and magnetically recoverable nanocatalyst. NEW J CHEM 2019. [DOI: 10.1039/c9nj01160a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel core–shell structured magnetic silica supported propylamine/molybdate complex (Fe3O4@SiO2/Pr-NMo[Mo5O18]) is prepared, characterized and applied as an effective and easily recoverable nanocatalyst in the synthesis of pyrano-pyrazole derivatives.
Collapse
Affiliation(s)
- Maryam Neysi
- Department of Chemistry
- Yasouj University
- Yasouj
- Iran
| | | | | |
Collapse
|
47
|
Maleki A, Firouzi-Haji R. L-Proline functionalized magnetic nanoparticles: A novel magnetically reusable nanocatalyst for one-pot synthesis of 2,4,6-triarylpyridines. Sci Rep 2018; 8:17303. [PMID: 30470821 PMCID: PMC6251865 DOI: 10.1038/s41598-018-35676-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/09/2018] [Indexed: 12/03/2022] Open
Abstract
In this work, an efficient method for the immobilization of L-proline on magnetic nanoparticles was offered and evaluated as a recoverable magnetic nanocatalyst for synthesis of 2,4,6-triarylpyridines through one-pot three-component reaction of acetophenone, aryl aldehydes and ammonium acetate. This article is the first report of the catalytic application of L-proline functionalized magnetic nanoparticles in organic reactions as a magnetic nanocatalyst. This novel magnetic nanocatalyst proved to be effective and provided the products in high to excellent yield under solvent-free conditions. The structure of obtained nanoparticles was characterized by Fourier transform infrared spectrophotometry (FT-IR), field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA) and energy-dispersive X-ray spectroscopy (EDX). TGA result revealed that it is stable up to 200 °C for using as a catalyst in organic reactions. FE-SEM image of the synthesized nanocatalyst showed that it has nearly core-shell spherical shape and uniform size distribution with an average size about 80 nm. Moreover, the catalyst could be easily recovered by facile separation by magnetic forces and recycled for several times without significant loss of its catalytic activity. The benefits of this study are simplicity, nontoxicity, low cost, simple workup, and an environmentally benign nature.
Collapse
Affiliation(s)
- Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Razieh Firouzi-Haji
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
48
|
γ-Fe2O3@SiO2@4-(sulfoamino)butanoic acid as a novel superparamagnetic nanocatalyst promoted green synthesis of 5-(aryl)-5H-spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-trione derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3571-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
Veisi H, Vafajoo S, Bahrami K, Mozafari B. Preparation of Polydopamine Sulfamic Acid-Functionalized Silica Gel as Heterogeneous and Recyclable Nanocatalyst for Acetylation of Alcohols and Amines Under Solvent-Free Conditions. Catal Letters 2018. [DOI: 10.1007/s10562-018-2486-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Adib M, Peytam F. An efficient synthesis of fully substituted pyrazolo[3,4-b]pyridin-5-amines from α-azidochalcones. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|