1
|
Ghazal M, Susloparova A, Lefebvre C, Daher Mansour M, Ghodhbane N, Melot A, Scholaert C, Guérin D, Janel S, Barois N, Colin M, Buée L, Yger P, Halliez S, Coffinier Y, Pecqueur S, Alibart F. Electropolymerization processing of side-chain engineered EDOT for high performance microelectrode arrays. Biosens Bioelectron 2023; 237:115538. [PMID: 37506488 DOI: 10.1016/j.bios.2023.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Microelectrode Arrays (MEAs) are popular tools for in vitro extracellular recording. They are often optimized by surface engineering to improve affinity with neurons and guarantee higher recording quality and stability. Recently, PEDOT:PSS has been used to coat microelectrodes due to its good biocompatibility and low impedance, which enhances neural coupling. Herein, we investigate on electro-co-polymerization of EDOT with its triglymated derivative to control valence between monomer units and hydrophilic functions on a conducting polymer. Molecular packing, cation complexation, dopant stoichiometry are governed by the glycolation degree of the electro-active coating of the microelectrodes. Optimal monomer ratio allows fine-tuning the material hydrophilicity and biocompatibility without compromising the electrochemical impedance of microelectrodes nor their stability while interfaced with a neural cell culture. After incubation, sensing readout on the modified electrodes shows higher performances with respect to unmodified electropolymerized PEDOT, with higher signal-to-noise ratio (SNR) and higher spike counts on the same neural culture. Reported SNR values are superior to that of state-of-the-art PEDOT microelectrodes and close to that of state-of-the-art 3D microelectrodes, with a reduced fabrication complexity. Thanks to this versatile technique and its impact on the surface chemistry of the microelectrode, we show that electro-co-polymerization trades with many-compound properties to easily gather them into single macromolecular structures. Applied on sensor arrays, it holds great potential for the customization of neurosensors to adapt to environmental boundaries and to optimize extracted sensing features.
Collapse
Affiliation(s)
- Mahdi Ghazal
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Anna Susloparova
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Camille Lefebvre
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Michel Daher Mansour
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Najami Ghodhbane
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Alexis Melot
- Laboratoire Nanotechnologies & Nanosystèmes (LN2, UMI 3463) | CNRS, Université de Sherbrooke, J1X0A5, Sherbrooke, Canada
| | - Corentin Scholaert
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - David Guérin
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Sébastien Janel
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Nicolas Barois
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Morvane Colin
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Pierre Yger
- Plasticity & SubjectivitY Team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; Institut de La Vision, Sorbonne Université, INSERM, Centre National de La Recherche Scientifique, Paris, France
| | - Sophie Halliez
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Yannick Coffinier
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France.
| | - Sébastien Pecqueur
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France.
| | - Fabien Alibart
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France; Laboratoire Nanotechnologies & Nanosystèmes (LN2, UMI 3463) | CNRS, Université de Sherbrooke, J1X0A5, Sherbrooke, Canada
| |
Collapse
|
2
|
Santos NE, Mendes JC, Braga SS. The Gemstone Cyborg: How Diamond Films Are Creating New Platforms for Cell Regeneration and Biointerfacing. Molecules 2023; 28:molecules28041626. [PMID: 36838614 PMCID: PMC9968187 DOI: 10.3390/molecules28041626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Diamond is a promising material for the biomedical field, mainly due to its set of characteristics such as biocompatibility, strength, and electrical conductivity. Diamond can be synthesised in the laboratory by different methods, is available in the form of plates or films deposited on foreign substrates, and its morphology varies from microcrystalline diamond to ultrananocrystalline diamond. In this review, we summarise some of the most relevant studies regarding the adhesion of cells onto diamond surfaces, the consequent cell growth, and, in some very interesting cases, the differentiation of cells into neurons and oligodendrocytes. We discuss how different morphologies can affect cell adhesion and how surface termination can influence the surface hydrophilicity and consequent attachment of adherent proteins. At the end of the review, we present a brief perspective on how the results from cell adhesion and biocompatibility can make way for the use of diamond as biointerface.
Collapse
Affiliation(s)
- Nádia E. Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Instituto de Telecomunicações and University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana C. Mendes
- Instituto de Telecomunicações and University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.C.M.); (S.S.B.)
| | - Susana Santos Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.C.M.); (S.S.B.)
| |
Collapse
|
3
|
Shokoohimehr P, Cepkenovic B, Milos F, Bednár J, Hassani H, Maybeck V, Offenhäusser A. High-Aspect-Ratio Nanoelectrodes Enable Long-Term Recordings of Neuronal Signals with Subthreshold Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200053. [PMID: 35527345 DOI: 10.1002/smll.202200053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The further development of neurochips requires high-density and high-resolution recordings that also allow neuronal signals to be observed over a long period of time. Expanding fields of network neuroscience and neuromorphic engineering demand the multiparallel and direct estimations of synaptic weights, and the key objective is to construct a device that also records subthreshold events. Recently, 3D nanostructures with a high aspect ratio have become a particularly suitable interface between neurons and electronic devices, since the excellent mechanical coupling to the neuronal cell membrane allows very high signal-to-noise ratio recordings. In the light of an increasing demand for a stable, noninvasive and long-term recording at subthreshold resolution, a combination of vertical nanostraws with nanocavities is presented. These structures provide a spontaneous tight coupling with rat cortical neurons, resulting in high amplitude sensitivity and postsynaptic resolution capability, as directly confirmed by combined patch-clamp and microelectrode array measurements.
Collapse
Affiliation(s)
- Pegah Shokoohimehr
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- Faculty 1, RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Bogdana Cepkenovic
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- Faculty 1, RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Frano Milos
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- Faculty 1, RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Justus Bednár
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- Faculty 1, RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Hossein Hassani
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- Faculty 1, RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Vanessa Maybeck
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
| |
Collapse
|
4
|
Baluchová S, Brycht M, Taylor A, Mortet V, Krůšek J, Dittert I, Sedláková S, Klimša L, Kopeček J, Schwarzová-Pecková K. Enhancing electroanalytical performance of porous boron-doped diamond electrodes by increasing thickness for dopamine detection. Anal Chim Acta 2021; 1182:338949. [PMID: 34602205 DOI: 10.1016/j.aca.2021.338949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022]
Abstract
Novel porous boron-doped diamond (BDDporous)-based materials have attracted lots of research interest due to their enhanced detection ability and biocompatibility, favouring them for use in neuroscience. This study reports on morphological, spectral, and electrochemical characterisation of three BDDporous electrodes of different thickness given by a number of deposited layers (2, 3 and 5). These were prepared using microwave plasma-enhanced chemical vapour deposition on SiO2 nanofiber-based scaffolds. Further, the effect of number of layers and poly-l-lysine coating, commonly employed in neuron cultivation experiments, on sensing properties of the neurotransmitter dopamine in a pH 7.4 phosphate buffer media was investigated. The boron doping level of ∼2 × 1021 atoms cm-3 and increased content of non-diamond (sp2) carbon in electrodes with more layers was evaluated by Raman spectroscopy. Cyclic voltammetric experiments revealed reduced working potential windows (from 2.4 V to 2.2 V), higher double-layer capacitance values (from 405 μF cm-2 to 1060 μF cm-2), enhanced rates of electron transfer kinetics and larger effective surface areas (from 5.04 mm2 to 7.72 mm2), when the number of porous layers increases. For dopamine, a significant boost in analytical performance was recognized with increasing number of layers using square-wave voltammetry: the highest sensitivity of 574.1 μA μmol-1 L was achieved on a BDDporous electrode with five layers and dropped to 35.9 μA μmol-1 L when the number of layers decreased to two. Consequently, the lowest detection limit of 0.20 μmol L-1 was obtained on a BDDporous electrode with five layers. Moreover, on porous electrodes, enhanced selectivity for dopamine detection in the presence of ascorbic acid and uric acid was demonstrated. The application of poly-l-lysine coating on porous electrode surface resulted in a decrease in dopamine peak currents by 17% and 60% for modification times of 1 h and 15 h, respectively. Hence, both examined parameters, the number of deposited porous layers and the presence of poly-l-lysine coating, were proved to considerably affect the characteristics and performance of BDDporous electrodes.
Collapse
Affiliation(s)
- Simona Baluchová
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00, Prague 2, Czech Republic; FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Mariola Brycht
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Tamka 12, 91-403, Łódź, Poland
| | - Andrew Taylor
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Vincent Mortet
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Sítná Sq. 3105, 272 01, Kladno, Czech Republic
| | - Jan Krůšek
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Ivan Dittert
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Silvia Sedláková
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Ladislav Klimša
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Jaromír Kopeček
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Karolina Schwarzová-Pecková
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
5
|
Wolf NR, Rai P, Glass M, Milos F, Maybeck V, Offenhäusser A, Wördenweber R. Mechanical and Electronic Cell-Chip Interaction of APTES-Functionalized Neuroelectronic Interfaces. ACS APPLIED BIO MATERIALS 2021; 4:6326-6337. [PMID: 35006867 DOI: 10.1021/acsabm.1c00576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we analyze the impact of a chip coating with a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) on the electronic and mechanical properties of neuroelectronic interfaces. We show that the large signal transfer, which has been observed for these interfaces, is most likely a consequence of the strong mechanical coupling between cells and substrate. On the one hand, we demonstrate that the impedance of the interface between Pt electrodes and an electrolyte is slightly reduced by the APTES SAM. However, this reduction of approximately 13% is definitely not sufficient to explain the large signal transfer of APTES coated electrodes demonstrated previously. On the other hand, the APTES coating leads to a stronger mechanical clamping of the cells, which is visible in microscopic images of the cell development of APTES-coated substrates. This stronger mechanical interaction is most likely caused by the positively charged amino functional group of the APTES SAM. It seems to lead to a smaller cleft between substrate and cells and, thus, to reduced losses of the cell's action potential signal at the electrode. The disadvantage of this tight binding of the cells to the rigid, planar substrate seems to be the short lifetime of the cells. In our case the density of living cells starts to decrease together with the visual deformation of the cells typically at DIV 9. Solutions for this problem might be the use of soft substrates and/or the replacement of the short APTES molecules with larger molecules or molecular multilayers.
Collapse
Affiliation(s)
- Nikolaus R Wolf
- Institute of Biological Information Processing - Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Pratika Rai
- Institute of Biological Information Processing - Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Manuel Glass
- Institute of Biological Information Processing - Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Frano Milos
- Institute of Biological Information Processing - Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Vanessa Maybeck
- Institute of Biological Information Processing - Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing - Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roger Wördenweber
- Institute of Biological Information Processing - Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
6
|
Milos F, Belu A, Mayer D, Maybeck V, Offenhäusser A. Polymer Nanopillars Induce Increased Paxillin Adhesion Assembly and Promote Axon Growth in Primary Cortical Neurons. Adv Biol (Weinh) 2021. [DOI: 10.1002/adbi.202000248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frano Milos
- Institute of Biological Information Processing IBI‐3 Forschungszentrum Jülich GmbH Jülich 52425 Germany
- RWTH Aachen Aachen Germany
| | - Andreea Belu
- Department of Anesthesiology and Intensive Care Medicine University Hospital of Cologne Cologne 50931 Germany
| | - Dirk Mayer
- Institute of Biological Information Processing IBI‐3 Forschungszentrum Jülich GmbH Jülich 52425 Germany
| | - Vanessa Maybeck
- Institute of Biological Information Processing IBI‐3 Forschungszentrum Jülich GmbH Jülich 52425 Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing IBI‐3 Forschungszentrum Jülich GmbH Jülich 52425 Germany
- RWTH Aachen Aachen Germany
| |
Collapse
|
7
|
Chemla Y, Avraham ES, Markus A, Teblum E, Slotky A, Kostikov Y, Farah N, Telkhozhayeva M, Shoval I, Nessim GD, Mandel Y. Carbon nanostructures as a scaffold for human embryonic stem cell differentiation toward photoreceptor precursors. NANOSCALE 2020; 12:18918-18930. [PMID: 32910131 DOI: 10.1039/d0nr02256j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon nanomaterials have been introduced as a scaffold for various biological applications due to their unique physical and electrical properties. Here we studied carbon nanotubes (CNTs) and carbon nanofibers (CNFs) as scaffold materials for the differentiation of human embryonic stem cells (hESCs) towards photoreceptor precursor cells (PRPs). We report on their cytoxicity, their effect on cell morphology, cell-surface interface and the differentiation process. To this end, hESCs were differentiated into PRPs on carbon nanofibers (CNFs), long horizontal CNTs (LHCNTs), vertically aligned CNTs (VACNTs) or glass (control) surfaces. The differentiated cells were investigated by immunohistochemistry, fluorescence imaging and electron microscopy. Our results revealed that the investigated nanomaterials were not cytotoxic to the cells during the differentiation process. The surface interface effect on the cells was apparent, affecting cell directionality, migration and morphology. Interestingly, cell fate was not dependent on the substrate type, as inferred from the similar dynamics of the loss of pluripotency and the comparable expression levels of the photoreceptor marker Crx for all investigated substrates. These results are important for better understanding the effect of nanomaterial surface interaction with differentiating neural cells in general, and for future use of these materials as scaffolds for differentiating photoreceptors for vision restoration in particular.
Collapse
Affiliation(s)
- Yoav Chemla
- Faculty of Life Sciences, School of Optometry and Vision Science, Bar Ilan University, Ramat Gan, 5290002, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sikder MKU, Tong W, Pingle H, Kingshott P, Needham K, Shivdasani MN, Fallon JB, Seligman P, Ibbotson MR, Prawer S, Garrett DJ. Laminin coated diamond electrodes for neural stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111454. [PMID: 33255039 DOI: 10.1016/j.msec.2020.111454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/15/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
The performance of many implantable neural stimulation devices is degraded due to the loss of neurons around the electrodes by the body's natural biological responses to a foreign material. Coating of electrodes with biomolecules such as extracellular matrix proteins is one potential route to suppress the adverse responses that lead to loss of implant functionality. Concurrently, however, the electrochemical performance of the stimulating electrode must remain optimal to continue to safely provide sufficient charge for neural stimulation. We have previously found that oxygen plasma treated nitrogen included ultrananocrystalline diamond coated platinum electrodes exhibit superior charge injection capacity and electrochemical stability for neural stimulation (Sikder et al., 2019). To fabricate bioactive diamond electrodes, in this work, laminin, an extracellular matrix protein known to be involved in inter-neuron adhesion and recognition, was used as an example biomolecule. Here, laminin was covalently coupled to diamond electrodes. Electrochemical analysis found that the covalently coupled films were robust and resulted in minimal change to the charge injection capacity of diamond electrodes. The successful binding of laminin and its biological activity was further confirmed using primary rat cortical neuron cultures, and the coated electrodes showed enhanced cell attachment densities and neurite outgrowth. The method proposed in this work is versatile and adaptable to many other biomolecules for producing bioactive diamond electrodes, which are expected to show reduced the inflammatory responses in vivo.
Collapse
Affiliation(s)
- Md Kabir Uddin Sikder
- Department of Medical Bionics, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; Bionics Institute, 384 Albert St, East Melbourne, VIC 3002, Australia; Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Wei Tong
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC 3010, Australia; School of Physics, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Hitesh Pingle
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Peter Kingshott
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Karina Needham
- Department of Otolaryngology, The University of Melbourne, Royal Victorian Eye & Ear Hospital, East Melbourne, Australia
| | - Mohit N Shivdasani
- Bionics Institute, 384 Albert St, East Melbourne, VIC 3002, Australia; Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, NSW 2033, Australia
| | - James B Fallon
- Department of Medical Bionics, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; Bionics Institute, 384 Albert St, East Melbourne, VIC 3002, Australia; Department of Otolaryngology, The University of Melbourne, Royal Victorian Eye & Ear Hospital, East Melbourne, Australia
| | - Peter Seligman
- Bionics Institute, 384 Albert St, East Melbourne, VIC 3002, Australia
| | - Michael R Ibbotson
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC 3010, Australia; Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - David J Garrett
- School of Physics, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; RMIT University, School of Engineering, Melbourne, VIC 3001, Australia
| |
Collapse
|
9
|
Gulino M, Kim D, Pané S, Santos SD, Pêgo AP. Tissue Response to Neural Implants: The Use of Model Systems Toward New Design Solutions of Implantable Microelectrodes. Front Neurosci 2019; 13:689. [PMID: 31333407 PMCID: PMC6624471 DOI: 10.3389/fnins.2019.00689] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/18/2019] [Indexed: 01/28/2023] Open
Abstract
The development of implantable neuroelectrodes is advancing rapidly as these tools are becoming increasingly ubiquitous in clinical practice, especially for the treatment of traumatic and neurodegenerative disorders. Electrodes have been exploited in a wide number of neural interface devices, such as deep brain stimulation, which is one of the most successful therapies with proven efficacy in the treatment of diseases like Parkinson or epilepsy. However, one of the main caveats related to the clinical application of electrodes is the nervous tissue response at the injury site, characterized by a cascade of inflammatory events, which culminate in chronic inflammation, and, in turn, result in the failure of the implant over extended periods of time. To overcome current limitations of the most widespread macroelectrode based systems, new design strategies and the development of innovative materials with superior biocompatibility characteristics are currently being investigated. This review describes the current state of the art of in vitro, ex vivo, and in vivo models available for the study of neural tissue response to implantable microelectrodes. We particularly highlight new models with increased complexity that closely mimic in vivo scenarios and that can serve as promising alternatives to animal studies for investigation of microelectrodes in neural tissues. Additionally, we also express our view on the impact of the progress in the field of neural tissue engineering on neural implant research.
Collapse
Affiliation(s)
- Maurizio Gulino
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Donghoon Kim
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Sofia Duque Santos
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Bhaumik A, Narayan J. Direct conversion of carbon nanofibers into diamond nanofibers using nanosecond pulsed laser annealing. Phys Chem Chem Phys 2019; 21:7208-7219. [PMID: 30888378 DOI: 10.1039/c9cp00063a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we show the direct conversion of carbon nanofibers (CNFs) into diamond nanofibers (DNFs) by irradiating CNFs with an ArF nanosecond laser at room temperature and atmospheric pressure. The nanosecond laser pulses melt the tips of CNFs into a highly undercooled state, and their subsequent quenching results in the formation of DNFs. This formation of DNFs is dependent on the degree of undercooling which is controlled by nanosecond laser energy density and one-dimensional heat flow characteristics in CNFs. The conversion process starts at the top and extends with the number of pulses. Therefore, our highly non-equilibrium nanosecond laser processing opens a new avenue for the synthesis of exciting pure and doped diamond structures at ambient temperatures and pressures for a variety of applications.
Collapse
Affiliation(s)
- Anagh Bhaumik
- Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, NC 27695-7907, USA.
| | | |
Collapse
|
11
|
Kreysing E, Hassani H, Hampe N, Offenhäusser A. Nanometer-Resolved Mapping of Cell-Substrate Distances of Contracting Cardiomyocytes Using Surface Plasmon Resonance Microscopy. ACS NANO 2018; 12:8934-8942. [PMID: 30180539 DOI: 10.1021/acsnano.8b01396] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It has been shown that quantitative measurements of the cell-substrate distance of steady cells are possible with scanning surface plasmon resonance microscopy setups in combination with an angle resolved analysis. However, the accuracy of the determined cell-substrate distances as well as the capabilities for the investigation of cell dynamics remained limited due to the assumption of a homogeneous refractive index of the cytosol. Strong spatial or temporal deviations between the local refractive index and the average value can result in errors in the calculated cell-substrate distance of around 100 nm, while the average accuracy was determined to 37 nm. Here, we present a combination of acquisition and analysis techniques that enables the measurement of the cell-substrate distance of contractile cells as well as the study of intracellular processes through changes in the refractive index at the diffraction limit. By decoupling the measurement of the cell-substrate distance and the refractive index of the cytoplasm, we could increase the accuracy of the distance measurement on average by a factor of 25 reaching 1.5 nm under ideal conditions. We show a temporal and spatial mapping of changes in the refractive index and the cell-substrate distance which strongly correlate with the action potentials and reconstruct the three-dimensional profile of the basal cell membrane and its dynamics, while we reached an actual measurement accuracy of 2.3 nm.
Collapse
|
12
|
McGuire AF, Santoro F, Cui B. Interfacing Cells with Vertical Nanoscale Devices: Applications and Characterization. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:101-126. [PMID: 29570360 PMCID: PMC6530470 DOI: 10.1146/annurev-anchem-061417-125705] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Measurements of the intracellular state of mammalian cells often require probes or molecules to breach the tightly regulated cell membrane. Mammalian cells have been shown to grow well on vertical nanoscale structures in vitro, going out of their way to reach and tightly wrap the structures. A great deal of research has taken advantage of this interaction to bring probes close to the interface or deliver molecules with increased efficiency or ease. In turn, techniques have been developed to characterize this interface. Here, we endeavor to survey this research with an emphasis on the interface as driven by cellular mechanisms.
Collapse
Affiliation(s)
- Allister F McGuire
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| | - Francesca Santoro
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy;
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
13
|
Cobb SJ, Ayres ZJ, Macpherson JV. Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:463-484. [PMID: 29579405 DOI: 10.1146/annurev-anchem-061417-010107] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Boron doped diamond (BDD) is continuing to find numerous electrochemical applications across a diverse range of fields due to its unique properties, such as having a wide solvent window, low capacitance, and reduced resistance to fouling and mechanical robustness. In this review, we showcase the latest developments in the BDD electrochemical field. These are driven by a greater understanding of the relationship between material (surface) properties, required electrochemical performance, and improvements in synthetic growth/fabrication procedures, including material postprocessing. This has resulted in the production of BDD structures with the required function and geometry for the application of interest, making BDD a truly designer material. Current research areas range from in vivo bioelectrochemistry and neuronal/retinal stimulation to improved electroanalysis, advanced oxidation processes, supercapacitors, and the development of hybrid electrochemical-spectroscopic- and temperature-based technology aimed at enhancing electrochemical performance and understanding.
Collapse
Affiliation(s)
- Samuel J Cobb
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; ,
- Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom;
| | - Zoe J Ayres
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; ,
| | - Julie V Macpherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; ,
- Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom;
| |
Collapse
|
14
|
Belu A, Yilmaz M, Neumann E, Offenhäusser A, Demirel G, Mayer D. Asymmetric, nano-textured surfaces influence neuron viability and polarity. J Biomed Mater Res A 2018; 106:1634-1645. [PMID: 29427541 DOI: 10.1002/jbm.a.36363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/09/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Three dimensional, nanostructured surfaces have attracted considerable attention in biomedical research since they have proven to represent a powerful platform to influence cell fate. In particular, nanorods and nanopillars possess great potential for the control of cell adhesion and differentiation, gene and biomolecule delivery, optical and electrical stimulation and recording, as well as cell patterning. Here, we investigate the influence of asymmetric poly(dichloro-p-xylene) (PPX) columnar films on the adhesion and maturation of cortical neurons. We show that nanostructured films with dense, inclined polymer columns can support viable primary neuronal culture. The cell-nanostructure interface is characterized showing a minimal cell penetration but strong adhesion on the surface. Moreover, we quantify the influence of the nano-textured surface on the neural development (soma size, neuritogenesis, and polarity) in comparison to a planar PPX sample. We demonstrate that the nanostructures facilitates an enhancement in neurite branching as well as elongation of axons and growth cones. Furthermore, we show for the first time that the asymmetric orientation of polymeric nanocolumns strongly influences the initiation direction of the axon formation. These results evidence that 3D nano-topographies can significantly change neural development and can be used to engineer axon elongation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1634-1645, 2018.
Collapse
Affiliation(s)
- Andreea Belu
- Institute of Complex Systems, ICS-8, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,JARA-SOFT, Jülich, 52425, Germany
| | - Mehmet Yilmaz
- Bio-inspired Materials Research Laboratory (BIMREL), Gazi University, Ankara, Turkey
| | - Elmar Neumann
- Institute of Complex Systems, ICS-8, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,JARA-SOFT, Jülich, 52425, Germany
| | - Andreas Offenhäusser
- Institute of Complex Systems, ICS-8, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,JARA-SOFT, Jülich, 52425, Germany
| | - Gokhan Demirel
- Bio-inspired Materials Research Laboratory (BIMREL), Gazi University, Ankara, Turkey
| | - Dirk Mayer
- Institute of Complex Systems, ICS-8, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,JARA-SOFT, Jülich, 52425, Germany
| |
Collapse
|
15
|
Nistor PA, May PW. Diamond thin films: giving biomedical applications a new shine. J R Soc Interface 2017; 14:20170382. [PMID: 28931637 PMCID: PMC5636274 DOI: 10.1098/rsif.2017.0382] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/29/2017] [Indexed: 01/10/2023] Open
Abstract
Progress made in the last two decades in chemical vapour deposition technology has enabled the production of inexpensive, high-quality coatings made from diamond to become a scientific and commercial reality. Two properties of diamond make it a highly desirable candidate material for biomedical applications: first, it is bioinert, meaning that there is minimal immune response when diamond is implanted into the body, and second, its electrical conductivity can be altered in a controlled manner, from insulating to near-metallic. In vitro, diamond can be used as a substrate upon which a range of biological cells can be cultured. In vivo, diamond thin films have been proposed as coatings for implants and prostheses. Here, we review a large body of data regarding the use of diamond substrates for in vitro cell culture. We also detail more recent work exploring diamond-coated implants with the main targets being bone and neural tissue. We conclude that diamond emerges as one of the major new biomaterials of the twenty-first century that could shape the way medical treatment will be performed, especially when invasive procedures are required.
Collapse
Affiliation(s)
- P A Nistor
- Regenerative Medicine Laboratory, University of Bristol, Bristol BS8 1TD, UK
| | - P W May
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
16
|
Tran AQ, Kaulen C, Simon U, Offenhäusser A, Mayer D. Surface coupling strength of gold nanoparticles affects cytotoxicity towards neurons. Biomater Sci 2017; 5:1051-1060. [DOI: 10.1039/c7bm00054e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Weakly bound gold nanoparticles reveal awful toxicity towards neurons.
Collapse
Affiliation(s)
- A. Q. Tran
- JARA-FIT
- Aachen
- Germany
- Peter Grünberg (PGI8)
- Forschungszentrum Jülich GmbH
| | - C. Kaulen
- JARA-FIT
- Aachen
- Germany
- Institute of Inorganic Chemistry
- RWTH Aachen University
| | - U. Simon
- JARA-FIT
- Aachen
- Germany
- Institute of Inorganic Chemistry
- RWTH Aachen University
| | - A. Offenhäusser
- JARA-FIT
- Aachen
- Germany
- Peter Grünberg (PGI8)
- Forschungszentrum Jülich GmbH
| | - D. Mayer
- JARA-FIT
- Aachen
- Germany
- Peter Grünberg (PGI8)
- Forschungszentrum Jülich GmbH
| |
Collapse
|