1
|
Thalakkale Veettil U, Moreno A, Huertas-Alonso AJ, Morsali M, Pylypchuk IV, Liu LY, Sipponen MH. Mechanically recyclable melt-spun fibers from lignin esters and iron oxide nanoparticles: towards circular lignin materials. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:10424-10435. [PMID: 38089756 PMCID: PMC10711735 DOI: 10.1039/d3gc02381h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/12/2023] [Indexed: 10/16/2024]
Abstract
The inferior thermoplastic properties have limited production of melt-spun fibers from lignin. Here we report on the controlled esterification of softwood kraft lignin (SKL) to enable scalable, solvent-free melt spinning of microfibers using a cotton candy machine. We found that it is crucial to control the esterification process as melt-spun fibers could be produced from lignin oleate and lignin stearate precursors with degrees of esterification (DE) ranging from 20-50%, but not outside this range. To fabricate a functional hybrid material, we incorporated magnetite nanoparticles (MNPs) into the lignin oleate fibers by melt blending and subsequent melt spinning. Thermogravimetric analysis and X-ray diffraction studies revealed that increasing the weight fraction of MNPs led to improved thermal stability of the fibers. Finally, we demonstrated adsorption of organic dyes, magnetic recovery, and recycling via melt spinning of the regular and magnetic fibers with 95% and 83% retention of the respective adsorption capacities over three adsorption cycles. The mechanical recyclability of the microfibers represents a new paradigm in lignin-based circular materials.
Collapse
Affiliation(s)
- Unnimaya Thalakkale Veettil
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Adrian Moreno
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Alberto J Huertas-Alonso
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Mohammad Morsali
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
- Wallenberg Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University SE-10691 Stockholm Sweden
| | - Ievgen V Pylypchuk
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Li-Yang Liu
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
- Wallenberg Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University SE-10691 Stockholm Sweden
| |
Collapse
|
2
|
Argyropoulos DDS, Crestini C, Dahlstrand C, Furusjö E, Gioia C, Jedvert K, Henriksson G, Hulteberg C, Lawoko M, Pierrou C, Samec JSM, Subbotina E, Wallmo H, Wimby M. Kraft Lignin: A Valuable, Sustainable Resource, Opportunities and Challenges. CHEMSUSCHEM 2023:e202300492. [PMID: 37493340 DOI: 10.1002/cssc.202300492] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Kraft lignin, a by-product from the production of pulp, is currently incinerated in the recovery boiler during the chemical recovery cycle, generating valuable bioenergy and recycling inorganic chemicals to the pulping process operation. Removing lignin from the black liquor or its gasification lowers the recovery boiler load enabling increased pulp production. During the past ten years, lignin separation technologies have emerged and the interest of the research community to valorize this underutilized resource has been invigorated. The aim of this Review is to give (1) a dedicated overview of the kraft process with a focus on the lignin, (2) an overview of applications that are being developed, and (3) a techno-economic and life cycle asseeements of value chains from black liquor to different products. Overall, it is anticipated that this effort will inspire further work for developing and using kraft lignin as a commodity raw material for new applications undeniably promoting pivotal global sustainability concerns.
Collapse
Affiliation(s)
- Dimitris D S Argyropoulos
- Departments of Chemistry and Forest Biomaterials, North Carolina State University, 431 Dan Allen Drive, Raleigh, North Carolina, 27695, USA
| | - Claudia Crestini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30170, Venezia-Mestre, Italy
| | | | - Erik Furusjö
- Division of Bioeconomy and Health, RISE Research Institutes of Sweden, Lindholmspiren 7 A, SE-41756, Göteborg, Sweden
- Division of Energy Science, Luleå University of Technology, Universitetsområdet Porsön, SE-971 87, Luleå, Sweden
| | - Claudio Gioia
- Department of physics, University of Trento, Via Sommarive 14, 38123, Trento, Italy
| | - Kerstin Jedvert
- Division of Materials and Production, RISE Research Institutes of Sweden, Lindholmspiren 7 A, SE-41756, Göteborg, Sweden
| | - Gunnar Henriksson
- Wallenberg Wood Science Center (WWSC), KTH, Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Christian Hulteberg
- Department of Chemical Engineering, Faculty of Engineering, Lund University, 221 00, Lund, Sweden
| | - Martin Lawoko
- Wallenberg Wood Science Center (WWSC), KTH, Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Clara Pierrou
- RenFuel Materials AB, Rapsgatan 25, SE-754 50, Uppsala, Sweden
| | - Joseph S M Samec
- Ren Fuel K2B AB, Rapsgatan 25, SE-754 50, Uppsala, Sweden
- RenFuel Materials AB, Rapsgatan 25, SE-754 50, Uppsala, Sweden
- Department of Organic Chemistry, Stockholm University, Svante Arhenius väg 16 C, 10691, Stockholm, Sweden
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Elena Subbotina
- Center for Green Chemistry and Green Engineering, Yale University, 370 Prospect St, New Haven, CT 06511, USA
| | | | - Martin Wimby
- Valmet AB, Regnbågsgatan 6, 41755, Göteborg, Sweden
| |
Collapse
|
3
|
Menta VGK, Tahir I, Abutunis A. Effects of Blending Tobacco Lignin with HDPE on Thermal and Mechanical Properties. MATERIALS 2022; 15:ma15134437. [PMID: 35806561 PMCID: PMC9267181 DOI: 10.3390/ma15134437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Depletion of fossil fuels and the detrimental environmental impacts of synthetic plastics have prompted a global interest in bio-based polymers. Lignin is an abundant, unused, and low-value byproduct of pulping and biochemical operations that has the potential to decrease the need for plastics derived from petroleum. Melt blending is one of the easiest strategies for expanding the commercial applications of lignin. Concerns remain, however, regarding the negative effects of lignin on the final composite material’s performance, and the increase in manufacturing costs. This study investigates the effects of blending lignin extracted from tobacco using a novel one-step processing technique on injection molding parameters, and the mechanical, physical, and thermal properties of high-density polyethylene (HDPE). By extruding HDPE pellets and lignin powder, varying blend concentrations (0, 5, 10, 15, and 30% wt.) were produced. Scanning electron microscopy (SEM) and optical microscopy were used to investigate the compatibility of the blend morphology. Results indicated that interfacial interactions were achieved as particles of tobacco lignin were well dispersed and uniformly distributed throughout HDPE. Intermolecular interactions between HDPE and lignin were also discovered through Fourier-transform infrared (FTIR) spectral analyses. The tensile test results showed that increase in lignin content up to 15% wt. had little effect on tensile strength, but at 30% wt., a 19% reduction was observed. With the addition of 5, 10, 15, and 30% wt. of lignin, the tensile modulus increased by 4%, 29%, 25%, and 8%, respectively. TGA results demonstrated that at 15% and 30% wt., tobacco lignin acted as a thermal stabilizer. The processability study revealed that tobacco lignin could be processed easily using injection molding without requiring significant changes to the process parameters. Overall, tobacco lignin showed great promise as a biodegradable HDPE filler.
Collapse
|
4
|
Prochukhan N, O'Brien SA, Davó-Quiñonero A, Trubetskaya A, Cotter E, Selkirk A, Senthamaraikannan R, Ruether M, McCloskey D, Morris MA. Room Temperature Fabrication of Macroporous Lignin Membranes for the Scalable Production of Black Silicon. Biomacromolecules 2022; 23:2512-2521. [PMID: 35506692 PMCID: PMC9198978 DOI: 10.1021/acs.biomac.2c00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Rising global demand
for biodegradable materials and green sources
of energy has brought attention to lignin. Herein, we report a method
for manufacturing standalone lignin membranes without additives for
the first time to date. We demonstrate a scalable method for macroporous
(∼100 to 200 nm pores) lignin membrane production using four
different organosolv lignin materials under a humid environment (>50%
relative humidity) at ambient temperatures (∼20 °C). A
range of different thicknesses is reported with densely porous films
observed to form if the membrane thickness is below 100 nm. The fabricated
membranes were readily used as a template for Ni2+ incorporation
to produce a nickel oxide membrane after UV/ozone treatment. The resultant
mask was etched via an inductively coupled plasma reactive ion etch
process, forming a silicon membrane and as a result yielding black
silicon (BSi) with a pore depth of >1 μm after 3 min with
reflectance
<3% in the visible light region. We anticipate that our lignin
membrane methodology can be readily applied to various processes ranging
from catalysis to sensing and adapted to large-scale manufacturing.
Collapse
Affiliation(s)
- Nadezda Prochukhan
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland.,BiOrbic, Bioeconomy SFI Research Centre, University College Dublin, Dublin 4, Ireland
| | - Stephen A O'Brien
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Arantxa Davó-Quiñonero
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Anna Trubetskaya
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Eoin Cotter
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew Selkirk
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Ramsankar Senthamaraikannan
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Manuel Ruether
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - David McCloskey
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Michael A Morris
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College Dublin, Dublin 2, Ireland.,BiOrbic, Bioeconomy SFI Research Centre, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
5
|
Bisneto MPDS, Gouveia JR, Antonino LD, Tavares LB, Ito NM, dos Santos DJ. Effects of Functionalized Kraft Lignin Incorporation on Polypropylene Surface Energy and Practical Adhesion. Polymers (Basel) 2022; 14:polym14050999. [PMID: 35267822 PMCID: PMC8912489 DOI: 10.3390/polym14050999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022] Open
Abstract
Polypropylene (PP) is a multifunctional and widely applied polymer. Nevertheless, its low energy surface and poor adhesion are well-known and might impair some prospective applications. Aiming to overcome these limitations, PP composites can be applied as a tool to enhance PP surface energy and then increase its practical adhesion. In this work, Kraft lignin (KL) was chemically modified and blended with PP. In short, KL was hydroxypropylated and further reacted with acetic anhydride (A-oxi-KL) or maleic anhydride (M-oxi-KL). Lignin modifications were confirmed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). PP-composites with different lignin contents, as well as pristine PP, were characterized in terms of their thermal behavior, morphology, surface energy, and practical adhesion by DSC, scanning electron microscopy (SEM), contact angle measurement, and peeling tests, respectively. Lignin incorporation did not affect the PP degree of crystallization. The lignin modifications led to a better compatibility with the PP matrix and surface energies up to 86% higher than neat PP. Increases of up to 66% in the peel strength were verified. Composites with M-oxi-KL showed the best adhesion performance, confirming the lignin functionalization is an efficient approach to improve the practical adhesion of PP films.
Collapse
Affiliation(s)
- Manuel Patricio da Silva Bisneto
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo Andre 09210-580, Brazil; (M.P.d.S.B.); (J.R.G.); (L.D.A.); (L.B.T.); (N.M.I.)
| | - Julia Rocha Gouveia
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo Andre 09210-580, Brazil; (M.P.d.S.B.); (J.R.G.); (L.D.A.); (L.B.T.); (N.M.I.)
| | - Leonardo Dalseno Antonino
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo Andre 09210-580, Brazil; (M.P.d.S.B.); (J.R.G.); (L.D.A.); (L.B.T.); (N.M.I.)
| | - Lara Basílio Tavares
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo Andre 09210-580, Brazil; (M.P.d.S.B.); (J.R.G.); (L.D.A.); (L.B.T.); (N.M.I.)
| | - Nathalie Minako Ito
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo Andre 09210-580, Brazil; (M.P.d.S.B.); (J.R.G.); (L.D.A.); (L.B.T.); (N.M.I.)
| | - Demetrio Jackson dos Santos
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo Andre 09210-580, Brazil; (M.P.d.S.B.); (J.R.G.); (L.D.A.); (L.B.T.); (N.M.I.)
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Santo Andre 09210-580, Brazil
- Correspondence:
| |
Collapse
|
6
|
Tahir I, Rapinac J, Abutunis A, Menta VG. Investigating the Effects of Tobacco Lignin on Polypropylene. Polymers (Basel) 2022; 14:polym14040706. [PMID: 35215619 PMCID: PMC8879011 DOI: 10.3390/polym14040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
The utilization of eco-friendly materials, such as lignin, for higher value product applications became increasingly important as environmental concerns due to global warming increased. Melt blending is one of the easy ways to increase the usage of lignin in commercial applications. However, the degradation of the final product performance and increase in the production time and costs are of major concern. In the current work, the effects of blending lignin, extracted from tobacco plants, with polypropylene (PP) on the injection molding parameters, physical, thermal and mechanical properties are investigated. Blends of lignin (5, 15 and 30% by wt.) with PP were prepared using a Filabot single screw extruder. Results show that tensile strength decreases by 3.2%, 9.9% and 5.4% at 5 wt. %, 15 wt. %, and 30 wt. % of lignin addition, respectively. The tensile stiffness was almost unaffected by the addition of up to 15% lignin, but a 23% increase was observed at 30 wt. % loading. When compared to lignin processed via expensive processes, such as acetylation, tobacco lignin showed superior performance. The DSC results show unaffected crystallization and melting temperatures but a decrease in enthalpies and percentage of crystallinity. The SEM and optical micrographs of the coupon cross-sections show that the extrusion process has achieved a uniform distribution of lignin particles in the PP. Thermogravimetric analysis results show that tobacco lignin accelerates the onset decomposition temperature but does not influence the decomposition peak temperature. The increase in lignin content did not have a significant influence on the injection molding parameters, implying no additional processing costs for adding lignin to the PP. Overall, the performance of the tobacco lignin is comparable, if not better, than that of processed lignin reported in the literature.
Collapse
|
7
|
Mechanically Reinforced, Flexible, Hydrophobic and UV Impermeable Starch-Cellulose Nanofibers (CNF)-Lignin Composites with Good Barrier and Thermal Properties. Polymers (Basel) 2021; 13:polym13244346. [PMID: 34960897 PMCID: PMC8706025 DOI: 10.3390/polym13244346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/20/2023] Open
Abstract
Bio-based composite films have been widely studied as potential substitutes for conventional plastics in food packaging. The aim of this study was to develop multifunctional composite films by introducing cellulose nanofibers (CNF) and lignin into starch-based films. Instead of costly and complicated chemical modification or covalent coupling, this study optimized the performance of the composite films by simply tuning the formulation. We found that starch films were mechanically reinforced by CNF, with lignin dispersing as nanoparticles embedded in the matrix. The newly built-up hydrogen bonding between these three components improves the integration of the films, while the introduction of CNF and lignin improved the thermal stability of the starch-based films. Lignin, as a functional additive, improved hydrophobicity and blocked UV transmission. The inherent barrier property of CNF and the dense starch matrix provided the composite films with good gas barrier properties. The prepared flexible films were optically transparent, and exhibited UV blocking ability, good oxygen-barrier properties, high hydrophobicity, appreciable mechanical strength and good thermal stability. These characteristics indicate potential utilization as a green alternative to synthetic plastics especially for food packaging applications.
Collapse
|
8
|
Qi F, Chaoqun Z, Weijun Y, Qingwen W, Rongxian O. Lignin-based polymers. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
On the basis of the world’s continuing consumption of raw materials, there was an urgent need to seek sustainable resources. Lignin, the second naturally abundant biomass, accounts for 15–35% of the cell walls of terrestrial plants and is considered waste for low-cost applications such as thermal and electricity generation. The impressive characteristics of lignin, such as its high abundance, low density, biodegradability, antioxidation, antibacterial capability, and its CO2 neutrality and enhancement, render it an ideal candidate for developing new polymer/composite materials. In past decades, considerable works have been conducted to effectively utilize waste lignin as a component in polymer matrices for the production of high-performance lignin-based polymers. This chapter is intended to provide an overview of the recent advances and challenges involving lignin-based polymers utilizing lignin macromonomer and its derived monolignols. These lignin-based polymers include phenol resins, polyurethane resins, polyester resins, epoxy resins, etc. The structural characteristics and functions of lignin-based polymers are discussed in each section. In addition, we also try to divide various lignin reinforced polymer composites into different polymer matrices, which can be separated into thermoplastics, rubber, and thermosets composites. This chapter is expected to increase the interest of researchers worldwide in lignin-based polymers and develop new ideas in this field.
Collapse
Affiliation(s)
- Fan Qi
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| | - Zhang Chaoqun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| | - Yang Weijun
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University , 214122 Wuxi , P. R. China
| | - Wang Qingwen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| | - Ou Rongxian
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| |
Collapse
|
9
|
Adjaoud A, Dieden R, Verge P. Sustainable Esterification of a Soda Lignin with Phloretic Acid. Polymers (Basel) 2021; 13:polym13040637. [PMID: 33669917 PMCID: PMC7924587 DOI: 10.3390/polym13040637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, a sustainable chemical process was developed through the Fischer esterification of Protobind® lignin, a wheat straw soda lignin, and phloretic acid, a naturally occurring phenolic acid. It aimed at increasing the reactivity of lignin by enhancing the number of unsubstituted phenolic groups via a green and solvent-free chemical pathway. The structural features of the technical and esterified lignins were characterized by complementary spectroscopic techniques, including 1H, 13C, 31P, and two-dimensional analysis. A substantial increase in p-hydroxyphenyl units was measured (+64%, corresponding to an increase of +1.3 mmol g−1). A full factorial design of the experiment was employed to quantify the impact of critical variables on the conversion yield. The subsequent statistical analysis suggested that the initial molar ratio between the two precursors was the factor predominating the yield of the reaction. Hansen solubility parameters of both the technical and esterified lignins were determined by solubility assays in multiple solvents, evidencing their high solubility in common organic solvents. The esterified lignin demonstrated a better thermal stability as the onset of thermal degradation shifted from 157 to 220 °C, concomitantly to the shift of the glass transition from 92 to 112 °C. In conclusion, the esterified lignin showed potential for being used as sustainable building blocks for composite and thermoset applications.
Collapse
Affiliation(s)
- Antoine Adjaoud
- Luxembourg Institute of Science and Technology, Materials Research and Technology Department, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (A.A.); (R.D.)
- University of Luxembourg, 2, Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Reiner Dieden
- Luxembourg Institute of Science and Technology, Materials Research and Technology Department, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (A.A.); (R.D.)
| | - Pierre Verge
- Luxembourg Institute of Science and Technology, Materials Research and Technology Department, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (A.A.); (R.D.)
- Correspondence:
| |
Collapse
|
10
|
Hydrophobization and Photo-Stabilization of Radiata Pinewood: The Effect of the Esterification on Thermal and Mechanical Properties. FORESTS 2020. [DOI: 10.3390/f11121243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wood protection through chemical modification has received increasing interest over the last decades due to the environmental issues related to conventional biocides or protecting products. Consequently, a wide range of new treatments are developed in laboratories, which are later scaled up in the industrial environment. The main goal of modifying wood for indoor–outdoor application is to change its hydrophilic character, which in turn improves the intrinsic properties of the material and its durability against external factors. Wood can be esterified through its hydroxyl groups to obtain a hydrophobic and photo-stable material. Chemical modifications of Pinus radiata D. Don wood using hexanoyl chloride (P6), dodecanoyl chloride (P12), and stearoyl chloride (P18) were carried out at different concentrations. Esterification was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) technique combined with a discriminatory analysis. Weight percent gain was associated with the number of carbons of the aliphatic chain of the fatty acid (P6 > P12 > P18). Moreover, an increase of wood density as a consequence of modification treatments was observed. A substantial improvement of the hydrophobicity of wood was observed by dynamic contact angle measurements. In addition, the effect of ultraviolet (UV) radiation on color changes was reduced with the treatments. Furthermore, the P6 treatment presented acceptable values of modulus of elasticity (MOE) and modulus of rupture (MOR), being suitable for similar mechanical uses as non-treated pinewood. However, only treatments P12 and P18 enhanced thermal resistance of the pinewood in an oxidative atmosphere.
Collapse
|
11
|
Study and optimization of parameters affecting the acetylation process of lignin sulfonate biopolymer. Int J Biol Macromol 2020; 163:1810-1820. [DOI: 10.1016/j.ijbiomac.2020.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 11/18/2022]
|
12
|
Nagardeolekar A, Ovadias M, Wang KT, Bujanovic B. Willow Lignin Recovered from Hot-Water Extraction for the Production of Hydrogels and Thermoplastic Blends. CHEMSUSCHEM 2020; 13:4702-4721. [PMID: 32691519 DOI: 10.1002/cssc.202001259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/06/2020] [Indexed: 06/11/2023]
Abstract
A blend of commercial willow cultivars (Salix spp.) was subjected to hydrothermal pretreatment: hot-water extraction in a pilot plant 65-ft3 digester. Lignin recovered from the autohydrolyzate (willow lignin, WL) was used to produce hydrogels and thermoplastic blends. Lignin-kaolin-acrylamide (WL 10.7 % w/w) and lignin-poly(ethylene)glycol diglycidyl ether (WL 66.7 % w/w) hydrogels exhibited favorable adsorption and absorption properties, respectively. Dye adsorption kinetics, swelling capacities, fragrance emanation, and compression moduli were measured for the hydrogels, along with SEM characterization. Additionally, WL was esterified by acetylation (C2 , WAc) and acylation with lauroyl chloride (C12 , WFAE and WFAEH ). The crude and esterified lignin samples were blended (1-12 % w/w) with polylactic acid (PLA) via lab-scale melt extrusion to produce thermoplastic blends. The physicochemical properties of the blends were evaluated. They exhibited an increase in degradation temperature and UV absorbance with potential to hinder photodegradation of PLA and may be leveraged in packaging applications.
Collapse
Affiliation(s)
- Aditi Nagardeolekar
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Mathew Ovadias
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
- Regeneron Pharmaceuticals Inc., Rensselaer, NY, USA
| | - Kuo-Ting Wang
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
- Golden Arrow Printing, New Taipei City, Taiwan
| | - Biljana Bujanovic
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
- USDA-Forest Products Laboratory, Madison, WI, USA
| |
Collapse
|
13
|
Abstract
A shift towards an economically viable biomass biorefinery concept requires the use of all biomass fractions (cellulose, hemicellulose, and lignin) for the production of high added-value products. As lignin is often underutilized, the establishment of lignin valorization routes is highly important. In-house produced organosolv as well as commercial Kraft lignin were used in this study. The aim of the current work was to make a comparative study of thermoplastic biomaterials from two different types of lignins. Native lignins were alkylate with two different alkyl iodides to produce ether-functionalized lignins. Successful etherification was verified by FT-IR spectroscopy, changes in the molecular weight of lignin, as well as 13C and 1H Nuclear Magnetic Resonance (NMR). The thermal stability of etherified lignin samples was considerably improved with the T2% of organosolv to increase from 143 °C to up to 213 °C and of Kraft lignin from 133 °C to up to 168 °C, and glass transition temperature was observed. The present study shows that etherification of both organosolv and Kraft lignin with alkyl halides can produce lignin thermoplastic biomaterials with low glass transition temperature. The length of the alkyl chain affects thermal stability as well as other thermal properties.
Collapse
|
14
|
Effect of soft segment molecular weight and NCO:OH ratio on thermomechanical properties of lignin-based thermoplastic polyurethane adhesive. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109690] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Alwadani NS, Fatehi P. Modification of Kraft Lignin with Dodecyl Glycidyl Ether. ChemistryOpen 2019; 8:1258-1266. [PMID: 31624697 PMCID: PMC6786095 DOI: 10.1002/open.201900263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Kraft lignin (KL) is extensively produced in industry but is mainly burned as fuel. To broaden its use, KL was grafted with dodecyl glycidyl ether to alter its thermal properties. The reaction of KL with dodecyl glycidyl ether (DGE) was analyzed using nuclear magnetic resonance (NMR), Fourier infrared spectroscopy (FT-IR) and elemental analysis. Alternatively, KL was methylated to mask its phenolic hydroxy groups to investigate how phenolic hydroxy groups impact the grafting of the alkyl chain of DGE onto lignin (methylated Kraft lignin, MKL). The methylation facilitated the molecular weight enhancement and thermal stability reduction of Kraft lignin via grafting with DGE. The influence of grafting alkyl chains on the structural and thermal properties of KL and MKL was studied using thermogravimetric analysis and differential scanning calorimetry analysis. Our data suggest that, due to their high molecular weights and lower glass transition temperatures, the produced lignin derivatives may be promising feedstocks for composite production.
Collapse
Affiliation(s)
- Norah S. Alwadani
- Chemical Engineering DepartmentLakehead UniversityThunder BayONCanadaP7B5E1
| | - Pedram Fatehi
- Chemical Engineering DepartmentLakehead UniversityThunder BayONCanadaP7B5E1
| |
Collapse
|
16
|
Husson E, Hulin L, Hadad C, Boughanmi C, Stevanovic T, Sarazin C. Acidic Ionic Liquid as Both Solvent and Catalyst for Fast Chemical Esterification of Industrial Lignins: Performances and Regioselectivity. Front Chem 2019; 7:578. [PMID: 31475140 PMCID: PMC6705185 DOI: 10.3389/fchem.2019.00578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 11/15/2022] Open
Abstract
Lignin can be considered an essential under-exploited polymer from lignocellulosic biomass representing a key for a profitable biorefinery. One method of lignin valorization could be the improvement of physico-chemical properties by esterification to enhance miscibility in apolar polyolefin matrices, thereby helping the production of bio-based composites. The present work describes for the first time a succeeded chemical esterification of industrial lignins with maleic anhydride in an acidic ionic liquid: 1-butyl-3-methyl imidazolium hydrogen sulfate without additional catalyst. This efficient strategy was applied to four industrial lignins: two softwood Kraft lignins (Indulin AT, Wayagamack), one hardwood Kraft lignin (Windsor), and one softwood organosolv lignin (Lignol), distinct in origin, extraction process and thus chemical structure. The chemical, structural, and thermal properties of modified lignins were characterized by 31P nuclear magnetic resonance, infrared spectroscopy and thermal analyses, then compared to those of unmodified lignins. After 4 h of reaction, between 30 to 52% of the constitutive hydroxyls were esterified depending on the type of lignin sample. The regioselectivity of the reaction was demonstrated to be preferentially orientated toward aliphatic hydroxyls for three out of four lignins (66.6, 65.5, and 83.6% for Indulin AT, Windsor and Lignol, respectively, vs. 51.7% for Wayagamack). The origin and the extraction process of the polymer would thus influence the efficiency and the regioselectivity of this reaction. Finally, we demonstrated that the covalent grafting of maleyl chain on lignins did not significantly affect thermal stability and increased significantly the solubility in polar and protic solvent probably due to additional exposed carboxylic groups resulted from mono-acylation independently of H/G/S ratio. Blending with polyolefins could then be considered in regard of compatibility with the obtained physico-chemical properties.
Collapse
Affiliation(s)
- Eric Husson
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Lise Hulin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Caroline Hadad
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, UMR CNRS 7378, Université de Picardie Jules Verne, Amiens, France
| | - Chaima Boughanmi
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Tatjana Stevanovic
- Département des Sciences du Bois et de la Forêt, Centre de Recherche sur les Matériaux Renouvelables, Université Laval, Quebec City, QC, Canada
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
17
|
Martín-Sampedro R, Santos JI, Eugenio ME, Wicklein B, Jiménez-López L, Ibarra D. Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis. Int J Biol Macromol 2019; 140:311-322. [PMID: 31408656 DOI: 10.1016/j.ijbiomac.2019.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/28/2019] [Accepted: 08/04/2019] [Indexed: 12/22/2022]
Abstract
Lignin streams produced in biorefineries are commonly used to obtain energy. In order to increase the competitiveness of this industry, new lignin valorization routes are necessary, for which a depth characterization of this biological macromolecule is essential. In this context, this study analyzed lignin streams of Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and during the subsequent enzymatic hydrolysis. These lignins included dissolved lignins from pre-treatment liquors and saccharification lignins from pre-treated materials. Chemical composition and structural features were analyzed by analytical standard methods and Fourier Transform Infrared spectroscopy (FTIR), size exclusion chromatography (SEC), 13C solid state nuclear magnetic resonance (13C NMR) and 1H-13C two-dimensional nuclear magnetic resonance (2D NMR); while thermal characterization included thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). In general, all studied lignins contained a predominance of β-O-4' aryl ether linkages, followed by resinol (β-β') and phenylcoumaran (β-5'), with a predominance of syringyl over guaiacyl and hydroxyphenyl units. Nevertheless, the dissolved lignins revealed a removal of linkages, especially β-O-4', leading to an enrichment of phenolic groups. Moreover, high thermal stability and good thermoplasticity were characteristics of these lignins. Contrary, the saccharification lignins exhibited a more intact structure, but with an important remaining carbohydrates content.
Collapse
Affiliation(s)
| | - José I Santos
- General Services of Research SGIKER, University of the Basque Country (UPV/EHU), Edificio Joxe Mari Korta Avda. Tolosa 72, Donostia-San Sebastian 20018, Spain
| | - María E Eugenio
- INIA-CIFOR, Forestry Products Department, Ctra de la Coruña Km 7.5, Madrid 28040, Spain
| | - Bernd Wicklein
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, Madrid 28049, Spain
| | - Laura Jiménez-López
- INIA-CIFOR, Forestry Products Department, Ctra de la Coruña Km 7.5, Madrid 28040, Spain
| | - David Ibarra
- INIA-CIFOR, Forestry Products Department, Ctra de la Coruña Km 7.5, Madrid 28040, Spain.
| |
Collapse
|
18
|
Dumont C, Belva F, Gauvin RM, Sauthier M. The Palladium-Catalyzed Carbonylative Telomerization Reaction with Phenols, Polyphenols and Kraft Lignin. CHEMSUSCHEM 2018; 11:3917-3922. [PMID: 30270516 DOI: 10.1002/cssc.201802017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/27/2018] [Indexed: 06/08/2023]
Abstract
An efficient carbonylative coupling reaction of two equivalents of 1,3-butadiene, yielding aryl nona-3,8-dienoate esters, is performed with phenols as nucleophile, and promoted by palladium-based catalysts. Optimization study reveals the key role of benzoic acid as a cocatalyst. The suggested catalyst combination enables the conversion of a wide scope of variously substituted phenols into corresponding esters with a high yield. Further tests were performed with diphenols, naturally-occurring phenols and an industrial grade Kraft lignin, thus, indicating the scope of this reaction for transforming industrially relevant polyphenolic structures.
Collapse
Affiliation(s)
- Clément Dumont
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- ICAM site de Lille, 6 rue Auber, 59016, Lille Cedex, France
| | - Frederic Belva
- ICAM site de Lille, 6 rue Auber, 59016, Lille Cedex, France
| | - Regis M Gauvin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Mathieu Sauthier
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| |
Collapse
|
19
|
Dias OAT, Sain M, Cesarino I, Leão AL. Development of high bio-content polypropylene composites with different industrial lignins. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Mohini Sain
- Faculty of Forestry; University of Toronto; Toronto Ontario Canada
| | - Ivana Cesarino
- College of Agricultural Sciences; São Paulo State University (Unesp); Botucatu São Paulo Brazil
| | - Alcides Lopes Leão
- College of Agricultural Sciences; São Paulo State University (Unesp); Botucatu São Paulo Brazil
| |
Collapse
|
20
|
Zhao X, Zhang Y, Yang M, Huang Z, Hu H, Huang A, Feng Z. Acylation of Lignin with Different Acylating Agents by Mechanical Activation-Assisted Solid Phase Synthesis: Preparation and Properties. Polymers (Basel) 2018; 10:E907. [PMID: 30960832 PMCID: PMC6403724 DOI: 10.3390/polym10080907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 11/16/2022] Open
Abstract
Acylated lignins with substituents consisting of different lengths of carbon chains were prepared by a mechanical activation-assisted solid phase synthesis (MASPS) technology with a customized stirring ball mill as a reactor. The structures and properties were analyzed by UV/Vis, FTIR, NMR, SEM, DSC, and TG. The results showed that the acylated lignins were successfully prepared with either non-cyclic or cyclic anhydrides as the acylating agents. Both aliphatic hydroxyl and phenolic hydroxyl groups of lignin reacted with non-cyclic anhydrides, and different reactivity of acylating agents resulted in different relative contents of phenolic and aliphatic substituents in the products. The reactivity of the cyclic anhydrides was weaker than that of the non-cyclic anhydrides, and the reactivity of the acylating agents decreased with increasing carbon chain length and unsaturated bonds of acyl groups. All of the acylated lignins except maleylated lignin had a lower glass transition temperature (Tg) than the original lignin. The acylated lignins prepared with non-cyclic anhydrides had better thermal stability than original lignin, and the thermal stability increased, but Tg decreased with an increasing chain length of the acyl groups. The acylated lignins prepared with cyclic anhydrides had higher a Tg than those with non-cyclic anhydrides with the same carbon number, and the thermal stability was not obviously improved.
Collapse
Affiliation(s)
- Xiaohong Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
- College of Materials and Environmental Engineering, Hezhou University, Hezhou 542899, China.
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Aimin Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Zhenfei Feng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
21
|
Dumont C, Gauvin RM, Belva F, Sauthier M. Palladium-Catalyzed Functionalization of Kraft Lignin: Ether Linkages through the Telomerization Reaction. CHEMSUSCHEM 2018; 11:1649-1655. [PMID: 29624897 DOI: 10.1002/cssc.201800123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/30/2018] [Indexed: 06/08/2023]
Abstract
Kraft lignin was efficiently functionalized with octadienyl ether linkages through the palladium-catalyzed telomerization of 1,3-butadiene. Comparison with molecular model substrates assessed the grafting of phenols and alcohols and an optimization study led to up to 69 % conversion of the total number of hydroxyl groups present in lignin. This catalytic study evidenced the partial oxidation of triphenylphosphine into triphenylphosphine oxide and triphenylphosphine sulfide by contaminants present in the industrial grade kraft lignin. The telomerised lignin is a malleable material and a preliminary study of the thermal properties showed a decrease in the glass transition in comparison with the starting material.
Collapse
Affiliation(s)
- Clément Dumont
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- ICAM site de Lille, 6 rue Auber, 59016, Lille Cedex, France
| | - Régis M Gauvin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Frédéric Belva
- ICAM site de Lille, 6 rue Auber, 59016, Lille Cedex, France
| | - Mathieu Sauthier
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| |
Collapse
|
22
|
Podkościelna B, Gordobil O, Riazanova AV, Dobele G, Labidi J, Lindström ME, Gun'ko VM, Sevastyanova O. Novel Porous Materials Obtained from Technical Lignins and Their Methacrylate Derivatives Copolymerized with Styrene and Divinylbenzene. ChemistrySelect 2017. [DOI: 10.1002/slct.201601827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Beata Podkościelna
- Department of Polymer Chemistry, Faculty of Chemistry; Maria Curie-Skłodowska University; pl. M. Curie-Skłodowskiej 5 20-031 Lublin Poland
| | - Oihana Gordobil
- Department of Chemical and Environmental Engineering; University of the Basque Country; Plaza Europa 1 20018 Donostia-San Sebastián Spain
| | - Anastasia V. Riazanova
- Department of Fibre and Polymer Technology; KTH - The Royal Institute of Technology; Teknikringen 56, SE- 10044 Stockholm Sweden
- Wallenberg Wood Science Center (WWSC); KTH - The Royal Institute of Technology; Teknikringen 56, SE- 10044 Stockholm Sweden
| | - Galina Dobele
- Laboratory of Lignin Chemistry; Latvian State Institute of Wood Chemistry; Dzerbenes Str. 27, LV 1006 Riga Latvia
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering; University of the Basque Country; Plaza Europa 1 20018 Donostia-San Sebastián Spain
| | - Mikael E. Lindström
- Department of Fibre and Polymer Technology; KTH - The Royal Institute of Technology; Teknikringen 56, SE- 10044 Stockholm Sweden
| | - Vladimir M. Gun'ko
- Department of Amorphous and Structurally Ordered Oxides; Chuiko Institute of Surface Chemistry; The National Academy of Sciences of Ukraine; General Naumov Str. 17 03164 Kyiv Ukraine
| | - Olena Sevastyanova
- Department of Fibre and Polymer Technology; KTH - The Royal Institute of Technology; Teknikringen 56, SE- 10044 Stockholm Sweden
- Wallenberg Wood Science Center (WWSC); KTH - The Royal Institute of Technology; Teknikringen 56, SE- 10044 Stockholm Sweden
| |
Collapse
|