1
|
Li Y, Tian G, Chen B, Liang J. Self-templating construction of flower-like mesoporous magnesium silicate composites from sepiolite for high-efficiency adsorption of aflatoxin B1. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
2
|
Pal N, Lee JH, Cho EB. Recent Trends in Morphology-Controlled Synthesis and Application of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2122. [PMID: 33113856 PMCID: PMC7692592 DOI: 10.3390/nano10112122] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/12/2023]
Abstract
The outstanding journey towards the investigation of mesoporous materials commences with the discovery of high surface area porous silica materials, named MCM-41 (Mobil Composition of Matter-41) according to the inventors' name Mobile scientists in the United States. Based on a self-assembled supramolecular templating mechanism, the synthesis of mesoporous silica has extended to wide varieties of silica categories along with versatile applications of all these types in many fields. These silica families have some extraordinary structural features, like highly tunable nanoscale sized pore diameter, good Brunauer-Emmett-Teller (BET) surface areas, good flexibility to accommodate different organic and inorganic functional groups, metals etc., onto their surface. As a consequence, thousands of scientists and researchers throughout the world have reported numerous silica materials in the form of published articles, communication, reviews, etc. Beside this, attention is also given to the morphology-oriented synthesis of silica nanoparticles and their significant effects on the emerging fields of study like catalysis, energy applications, sensing, environmental, and biomedical research. This review highlights a consolidated overview of those morphology-based mesoporous silica particles, emphasizing their syntheses and potential role in many promising fields of research.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Jun-Hyeok Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Eun-Bum Cho
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea;
| |
Collapse
|
3
|
Yu Q, Chang J, Wu C. Silicate bioceramics: from soft tissue regeneration to tumor therapy. J Mater Chem B 2020; 7:5449-5460. [PMID: 31482927 DOI: 10.1039/c9tb01467e] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Great efforts have been devoted to exploiting silicate bioceramics for various applications in soft tissue regeneration, owing to their excellent bioactivity. Based on the inherent ability of silicate bioceramics to repair tissue, bioactive ions are easily incorporated into silicate bioceramics to endow them with extra biological properties, such as enhanced angiogenesis, antibiosis, enhanced osteogenesis, and antitumor effect, which significantly expands the application of multifunctional silicate bioceramics. Furthermore, silicate nanobioceramics with unique structures have been widely employed for tumor therapy. In recent years, the novel applications of silicate bioceramics for both tissue regeneration and tumor therapy have substantially grown. Eliminating the skin tumors first and then repairing the skin wounds has been widely investigated by our groups, which might shed some light on treating other soft tissue tumor or tumor-induced defects. This review first describes the recent advances made in the development of silicate bioceramics as therapeutic platforms for soft tissue regeneration. We then highlight the major silicate nanobioceramics used for tumor therapy. Silicate bioceramics for both soft tissue regeneration and tumor therapy are further emphasized. Finally, challenges and future directions of silicate bioceramics stepping into the clinics are discussed. This review will inspire researchers to create the efficient and functional silicate bioceramics needed for regeneration and tumor therapy of other tissues.
Collapse
Affiliation(s)
- Qingqing Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | | | | |
Collapse
|
4
|
Li H, Zhu YJ. Liquid-Phase Synthesis of Iron Oxide Nanostructured Materials and Their Applications. Chemistry 2020; 26:9180-9205. [PMID: 32227538 DOI: 10.1002/chem.202000679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/27/2020] [Indexed: 12/14/2022]
Abstract
Owing to their high natural abundance, low cost, easy availability, and excellent magnetic properties, considerable interest has been devoted to the synthesis and applications of iron oxide nanostructured materials. Liquid-phase synthesis methods are economical and environmentally friendly with low energy consumption and volatile emissions, and as such have received much attention for the preparation of iron oxide nanostructured materials. Herein, the liquid-phase synthesis methods of iron oxide nanostructured materials including the co-precipitation method, microemulsion method, conventional hydrothermal and solvothermal methods, microwave-assisted heating method, sonolysis method, and other methods are summarized and reviewed. Many iron oxide nanostructured materials, self-assembled nanostructures, and nanocomposites have been successfully prepared, which are of great significance to enhance their structure-dependent properties and applications. The specific roles of liquid-phase chemical reaction parameters in regulating the chemical composition, structure, crystallinity, morphology, particle size, and dispersive behavior of the as-prepared iron oxide nanostructured materials are emphasized. The biomedical, environmental, and electrochemical energy storage applications of iron oxide nanostructured materials are discussed. Finally, challenges and perspectives are proposed for future investigations on the liquid-phase synthesis and applications of iron oxide nanostructured materials.
Collapse
Affiliation(s)
- Heng Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zhu X, Gong Y, Liu Y, Yang C, Wu S, Yuan G, Guo X, Liu J, Qin X. Ru@CeO 2 yolk shell nanozymes: Oxygen supply in situ enhanced dual chemotherapy combined with photothermal therapy for orthotopic/subcutaneous colorectal cancer. Biomaterials 2020; 242:119923. [PMID: 32145506 DOI: 10.1016/j.biomaterials.2020.119923] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022]
Abstract
Hypoxia is an important factor in forming multidrug resistance, recurrence and metastasis in solid tumors. Nanozymes respond to tumor microenvironment for tumor-specific treatment is a new and effective strategy. In this study, one-pot method was used to synthesize hollow Ru@CeO2 yolk shell nanozymes (Ru@CeO2 YSNs), which possess excellent light-to-heat conversion efficiency and catalytic performance. Antitumor drug ruthenium complex (RBT) and resveratrol (Res) were dual-loaded in Ru@CeO2 YSNs, and a double outer layer structure using polyethylene glycol was constructed to form dual-drug delivery system (Ru@CeO2-RBT/Res-DPEG) that was released on demand. The double outer layer structure increased the biocompatibility of Ru@CeO2 YSNs and effectively prolong the circulation time in blood. Ru@CeO2-RBT/Res-DPEG catalyzes endogenous H2O2 to produce oxygen, which achieve in situ oxygen supply and enhanced dual-chemotherapy and photothermal therapy (PTT) for colorectal cancer. In vitro studies found that Ru@CeO2-RBT/Res-DPEG has good tumor penetration depth and antitumor effect. In addition, Ru@CeO2-RBT/Res-DPEG can alleviate tumor hypoxia, and inhibit metastasis and recurrence of orthotopic and subcutaneous colorectal cancer. Accordingly, the study shows that yolk shell nanozymes can be used as an efficient synergistic system for dual-chemotherapy and PTT to kill tumor and inhibit orthotopic colorectal cancer metastasis and recurrence.
Collapse
Affiliation(s)
- Xufeng Zhu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Youcong Gong
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yanan Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Chunhua Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Sijie Wu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Guanglong Yuan
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xian Guo
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jie Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Xiuying Qin
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
6
|
Mohammadi Ziarani G, Mofatehnia P, Mohajer F, Badiei A. Rational design of yolk–shell nanostructures for drug delivery. RSC Adv 2020; 10:30094-30109. [PMID: 35518231 PMCID: PMC9059143 DOI: 10.1039/d0ra03611k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/28/2020] [Indexed: 11/21/2022] Open
Abstract
The recent progress in yolk–shell nanoparticles (YSNPs) as a new class of hollow nanostructures applied for drug delivery.
Collapse
Affiliation(s)
| | - Parisa Mofatehnia
- Department of Chemistry
- Faculty of Physics and Chemistry
- University of Alzahra
- Tehran
- Iran
| | - Fatemeh Mohajer
- Department of Chemistry
- Faculty of Physics and Chemistry
- University of Alzahra
- Tehran
- Iran
| | - Alireza Badiei
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| |
Collapse
|
7
|
Sun TW, Yu WL, Zhu YJ, Chen F, Zhang YG, Jiang YY, He YH. Porous Nanocomposite Comprising Ultralong Hydroxyapatite Nanowires Decorated with Zinc-Containing Nanoparticles and Chitosan: Synthesis and Application in Bone Defect Repair. Chemistry 2018; 24:8809-8821. [DOI: 10.1002/chem.201800425] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Wei-Lin Yu
- Department of Orthopedics; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
| | - Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Ying-Ying Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Yao-Hua He
- Department of Orthopedics; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 P. R. China
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital; School of Biomedical Engineering; Shanghai 200233 P. R. China
| |
Collapse
|
8
|
Sun TW, Yu WL, Zhu YJ, Yang RL, Shen YQ, Chen DY, He YH, Chen F. Hydroxyapatite Nanowire@Magnesium Silicate Core-Shell Hierarchical Nanocomposite: Synthesis and Application in Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16435-16447. [PMID: 28481082 DOI: 10.1021/acsami.7b03532] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multifunctional biomaterials that simultaneously combine high biocompatibility, biodegradability, and bioactivity are promising for applications in various biomedical fields such as bone defect repair and drug delivery. Herein, the synthesis of hydroxyapatite nanowire@magnesium silicate nanosheets (HANW@MS) core-shell porous hierarchical nanocomposites (nanobrushes) is reported. The morphology of the magnesium silicate (MS) shell can be controlled by simply varying the solvothermal temperature and the amount of Mg2+ ions. Compared with hydroxyapatite nanowires (HANWs), the HANW@MS core-shell porous hierarchical nanobrushes exhibit remarkably increased specific surface area and pore volume, endowing the HANW@MS core-shell porous hierarchical nanobrushes with high-performance drug loading and sustained release. Moreover, the porous scaffold of HANW@MS/chitosan (HANW@MS/CS) is prepared by incorporating the HANW@MS core-shell porous hierarchical nanobrushes into the chitosan (CS) matrix. The HANW@MS/CS porous scaffold not only promotes the attachment and growth of rat bone marrow derived mesenchymal stem cells (rBMSCs), but also induces the expression of osteogenic differentiation related genes and the vascular endothelial growth factor (VEGF) gene of rBMSCs. Furthermore, the HANW@MS/CS porous scaffold can obviously stimulate in vivo bone regeneration, owing to its high bioactive performance on the osteogenic differentiation of rBMSCs and in vivo angiogenesis. Since Ca, Mg, Si, and P elements are essential in human bone tissue, HANW@MS core-shell porous hierarchical nanobrushes with multifunctional properties are expected to be promising for various biomedical applications such as bone defect repair and drug delivery.
Collapse
Affiliation(s)
- Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | | | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Ri-Long Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Yue-Qin Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | | | | | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| |
Collapse
|
9
|
Yang X, Xiong J, Qiu P, Chen M, He D, He X, Wang K, Tang J. Synthesis of a core/satellite-like multifunctional nanocarrier for pH- and NIR-triggered intracellular chemothermal therapy and tumor imaging. RSC Adv 2017. [DOI: 10.1039/c6ra27802g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A core/satellite-like multifunctional system was developed for synergistic chemothermal therapy and tumor imaging based on the AuNRs capped mesoporous silica nanocarrier with UCNP core.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Jun Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Pengchao Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Mian Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| |
Collapse
|