1
|
Mohamat R, Bakar SA, Mohamed A, Muqoyyanah M, Othman MHD, Mamat MH, Malek MF, Ahmad MK, Yulkifli Y, Ramakrishna S. Incorporation of graphene oxide/titanium dioxide with different polymer materials and its effects on methylene blue dye rejection and antifouling ability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27207-7. [PMID: 37170051 DOI: 10.1007/s11356-023-27207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
Exposure of synthetic dye, such as methylene blue (MB), in water bodies led to a serious threat to living things because they are toxic and non-degradable. Amongst the introduced dye removal methods, membrane separation process can be considered a powerful technique for treating dye contamination. However, this method commonly suffered from drawbacks, such as short membrane lifetime, low permeability and selectivity. To overcome these issues, graphene oxide (GO) and titanium dioxide (TiO2) were used as additives to fabricate polyethersulfone (PES)- and polyvinylidene fluoride (PVDF)-based hybrid membranes via non-solvent-induced phase separation method. Prior to membrane fabrication, GO was synthesised via electrochemical exfoliation method assisted by customised triple-tail surfactant. The potential of PES- and PVDF-based hybrid membranes for wastewater treatment has been discussed widely. However, direct comparison between these two polymeric membranes is not critically discussed for MB dye separation application yet. Therefore, this study is aimed at evaluating the performance of different types of polymers (e.g. PES and PVDF) in terms of membrane morphology, properties, dye rejection and antifouling ability. Results showed that the incorporation of GO and TiO2 alters the morphology of the fabricated membranes and affects dye rejection further, as well as their antifouling performance. In contrast with pristine membrane, PES-GO/TiO2 and PVDF-GO/TiO2 possessed high hydrophilicity, as indicated by their low contact angle (67.38° and 62.12°, respectively). Based on this study, PVDF-GO/TiO2 showed higher porosity value (94.88%), permeability (87.32 L/m2hMPa) and MB rejection rate (92.63%), as well as flux recovery ratio value of > 100% as compared with others. Overall, the incorporation of GO and TiO2 with PVDF polymer are proven to be effective hybrid materials of membrane fabrication for dye rejection application in the near future. The polymer material's intrinsic properties can affect the attributes of the fabricated membrane.
Collapse
Affiliation(s)
- Rosmanisah Mohamat
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
- Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
| | - Suriani Abu Bakar
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia.
- Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia.
| | - Azmi Mohamed
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
| | - Muqoyyanah Muqoyyanah
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohamad Hafiz Mamat
- NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Mohd Firdaus Malek
- NANO-SciTech Lab (NST), Centre for Functional Materials and Nanotechnology, Institute of Science (IOS), Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Mohd Khairul Ahmad
- Microelectronic and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Yulkifli Yulkifli
- Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Padang, Padang, Indonesia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #07-08, Singapore, 117575, Singapore
| |
Collapse
|
2
|
Butt AS, Qaiser AA, Abid N, Mahmood U. Novel polyaniline-polyethersulfone nanofiltration membranes: effect of in situ polymerization time on structure and desalination performance. RSC Adv 2022; 12:33889-33898. [PMID: 36505678 PMCID: PMC9703125 DOI: 10.1039/d2ra05735b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
In this research, novel polyaniline-layered nanofiltration membranes were prepared by phase inversion of base polyethersulfone (PES) membranes and subsequent in situ solution-phase deposition of polyaniline as a thin surface layer. In these composite membranes, the impact of the polyaniline deposition time on steric hindrance and electrostatic interactions during permeation was elucidated. The chemical structure, thermal stability, and mechanical properties of the PES and PANI-PES membranes were investigated using Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA), respectively. The membranes' porosity and pore size decreased as PANI deposition time increased. As PANI deposition time increased, PANI layered nanofiltration membranes exhibited improved thermal stability but deteriorated mechanical characteristics due to free radical destruction from prolonged exposure to the oxidant. These PANI-PES membranes showed 43% rejection (NaCl) at 1.7 bar coupled with a flux of 11.59 L h-1 m2 that is quite promising when comparing with similar Nanofilteration (NF) membranes in the literature and commercial NF membranes, as well. As the deposited layer, PANI is partially doped; hence, permeation results have been interpreted in terms of steric hindrance and electrostatic repulsion by electrochemical PANI layering.
Collapse
Affiliation(s)
- Ayyaz Shahbaz Butt
- Department of Chemical Engineering, University of Engineering and Technology Pakistan
| | - Asif Ali Qaiser
- Department of Polymer and Process Engineering, University of Engineering and Technology 54890 Lahore Pakistan
| | - Nida Abid
- Department of Polymer and Process Engineering, University of Engineering and Technology 54890 Lahore Pakistan
| | - Umer Mahmood
- Department of Polymer and Process Engineering, University of Engineering and Technology 54890 Lahore Pakistan
| |
Collapse
|
3
|
Asadabadi S, Ahmadi Feijani E, Ahmadian‐Alam L. Gas separation improvement of
PES
/
PSF
/
PVP
blend mixed matrix membranes inclusive of amorphous
MOFs
by
O
2
plasma treatment. J Appl Polym Sci 2022. [DOI: 10.1002/app.53128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Simin Asadabadi
- Department of Applied Chemistry, Faculty of Chemistry Bu‐Ali Sina University Hamedan Iran
| | - Elahe Ahmadi Feijani
- Department of Applied Chemistry, Faculty of Chemistry Bu‐Ali Sina University Hamedan Iran
| | - Leila Ahmadian‐Alam
- Department of Electrical and Computer Engineering University of New Hampshire Durham New Hampshire USA
| |
Collapse
|
4
|
Yazid AF, Mukhtar H, Nasir R, Mohshim DF. Incorporating Carbon Nanotubes in Nanocomposite Mixed-Matrix Membranes for Gas Separation: A Review. MEMBRANES 2022; 12:membranes12060589. [PMID: 35736296 PMCID: PMC9230591 DOI: 10.3390/membranes12060589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022]
Abstract
Carbon nanotube (CNT) is a prominent material for gas separation due to its inherent smoothness of walls, allowing rapid transport of gases compared to other inorganic fillers. It also possesses high mechanical strength, enabling membranes to operate at high pressure. Although it has superior properties compared to other inorganic fillers, preparation of CNTs into a polymer matrix remains challenging due to the strong van der Waals forces of CNTs, which lead to agglomeration of CNTs. To utilize the full potential of CNTs, proper dispersion of CNTs must be addressed. In this paper, methods to improve the dispersion of CNTs using functionalization methods were discussed. Fabrication techniques for CNT mixed-matrix membrane (MMM) nanocomposites and their impact on gas separation performance were compared. This paper also reviewed the applications and potential of CNT MMMs in gas separation.
Collapse
Affiliation(s)
- Aimi Farzana Yazid
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Sri Iskandar 32610, Malaysia;
- Correspondence:
| | - Hilmi Mukhtar
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Sri Iskandar 32610, Malaysia;
| | - Rizwan Nasir
- Department of Chemical Engineering, University of Jeddah, Afsan Road, Jeddah 23890, Saudi Arabia;
| | - Dzeti Farhah Mohshim
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Sri Iskandar 32610, Malaysia;
| |
Collapse
|
5
|
Maleh MS, Kiani S, Raisi A. Study on the advantageous effect of nano-clay and polyurethane on structure and CO2 separation performance of polyethersulfone based ternary mixed matrix membranes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Mohamed A, Yousef S, Tonkonogovas A, Makarevicius V, Stankevičius A. High performance of PES-GNs MMMs for gas separation and selectivity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103565] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
7
|
|
8
|
Aqilah Ghazali A, Abd Rahman S, Abu Samah R. Factorial analysis on nanocomposite membranes for CO2, CH4 and N2. MATERIALS TODAY: PROCEEDINGS 2022; 57:1306-1314. [DOI: 10.1016/j.matpr.2021.12.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Farnam M, bin Mukhtar H, bin Mohd Shariff A. Highly permeable and selective polymeric blend mixed matrix membranes for CO2/CH4 separation. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01744-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Preparation and characterization of modified halloysite nanotubes—Pebax nanocomposite membranes for CO2/CH4 separation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
A Prospective Concept on the Fabrication of Blend PES/PEG/DMF/NMP Mixed Matrix Membranes with Functionalised Carbon Nanotubes for CO 2/N 2 Separation. MEMBRANES 2021; 11:membranes11070519. [PMID: 34357169 PMCID: PMC8303305 DOI: 10.3390/membranes11070519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
With an ever-increasing global population, the combustion of fossil fuels has risen immensely to meet the demand for electricity, resulting in significant increase in carbon dioxide (CO2) emissions. In recent years, CO2 separation technology, such as membrane technology, has become highly desirable. Fabricated mixed matrix membranes (MMMs) have the most desirable gas separation performances, as these membranes have the ability to overcome the trade-off limitations. In this paper, blended MMMs are reviewed along with two polymers, namely polyether sulfone (PES) and polyethylene glycol (PEG). Both polymers can efficiently separate CO2 because of their chemical properties. In addition, blended N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) solvents were also reviewed to understand the impact of blended MMMs’ morphology on separation of CO2. However, the fabricated MMMs had challenges, such as filler agglomeration and void formation. To combat this, functionalised multi-walled carbon nanotube (MWCNTs-F) fillers were utilised to aid gas separation performance and polymer compatibility issues. Additionally, a summary of the different fabrication techniques was identified to further optimise the fabrication methodology. Thus, a blended MMM fabricated using PES, PEG, NMP, DMF and MWCNTs-F is believed to improve CO2/nitrogen separation.
Collapse
|
12
|
The prospect of synthesis of PES/PEG blend membranes using blend NMP/DMF for CO2/N2 separation. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02500-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractCarbon dioxide (CO2) emissions have been the root cause for anthropogenic climate change. Decarbonisation strategies, particularly carbon capture and storage (CCS) are crucial for mitigating the risk of global warming. Among all current CO2 separation technologies, membrane separation has the biggest potential for CCS as it is inexpensive, highly efficient, and simple to operate. Polymeric membranes are the preferred choice for the gas separation industry due to simpler methods of fabrication and lower costs compared to inorganic or mixed matrix membranes (MMMs). However, plasticisation and upper-bound trade-off between selectivity and permeability has limited the gas separation performance of polymeric membranes. Recently, researchers have found that the blending of glassy and rubbery polymers can effectively minimise trade-off between selectivity and permeability. Glassy poly(ethersulfone) (PES) and rubbery poly(ethylene) glycol (PEG) are polymers that are known to have a high affinity towards CO2. In this paper, PEG and PES are reviewed as potential polymer blend that can yield a final membrane with high CO2 permeance and CO2/nitrogen (N2) selectivity. Gas separation properties can be enhanced by using different solvents in the phase-inversion process. N-Methyl-2-Pyrrolidone (NMP) and Dimethylformamide (DMF) are common industrial solvents used for membrane fabrication. Both NMP and DMF are reviewed as prospective solvent blend that can improve the morphology and separation properties of PES/PEG blend membranes due to their effects on the membrane structure which increases permeation as well as selectivity. Thus, a PES/PEG blend polymeric membrane fabricated using NMP and DMF solvents is believed to be a major prospect for CO2/N2 gas separation.
Collapse
|
13
|
Farnam M, bin Mukhtar H, bin Mohd Shariff A. A Review on Glassy and Rubbery Polymeric Membranes for Natural Gas Purification. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marjan Farnam
- Polymer Engineering Division Vancouver British Columbia Canada
| | - Hilmi bin Mukhtar
- Universiti Teknologi PETRONAS Department of Chemical Engineering, Seri Iskandar 32610 Perak Darul Ridzuan Malaysia
| | - Azmi bin Mohd Shariff
- Universiti Teknologi PETRONAS Department of Chemical Engineering, Seri Iskandar 32610 Perak Darul Ridzuan Malaysia
| |
Collapse
|
14
|
Akbarzadeh E, Shockravi A, Vatanpour V. High performance compatible thiazole-based polymeric blend cellulose acetate membrane as selective CO 2 absorbent and molecular sieve. Carbohydr Polym 2021; 252:117215. [PMID: 33183645 DOI: 10.1016/j.carbpol.2020.117215] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022]
Abstract
Green blend membranes comprise of high thermal resistance ortho-linked thiazole-based polyimine (PM-4) including thioether linkage were fabricated in combination of glassy cellulose acetate (CA). The thermal stabilities of PMs were examined using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Morphological aspects and functional groups of the membranes were investigated via field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) analysis respectively. X-ray diffraction (XRD) and mechanical strength were determined as well. The effects of polyimine content, pressure and temperature were studied on CO2 permeability (P) and selectivity. The pressure changes revealed exponentially increases on CO2 permeability by plasticization, facilitated transfer and solution-diffusion mechanisms, but decreases on CH4 and N2 permeations. Remarkable permeation (P = 3000 Barrer) of CA/PM-4 (1:3 % w/w) and ideal selectivity ratios of CO2/N2 = 59, CO2/CH4 = 33.7 were obtained at 3 bar and 35 °C versus neat CA membrane.
Collapse
Affiliation(s)
- Elaheh Akbarzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Kharazmi University, Mofatteh Avenue 49, 15719-14911 Tehran, Iran.
| | - Abbas Shockravi
- Department of Organic Chemistry, Faculty of Chemistry, Kharazmi University, Mofatteh Avenue 49, 15719-14911 Tehran, Iran.
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Mofatteh Avenue 49, 15719-14911 Tehran, Iran.
| |
Collapse
|
15
|
Majumdar S, Tokay B, Martin-Gil V, Campbell J, Castro-Muñoz R, Ahmad MZ, Fila V. Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116411] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Wong KK, Jawad ZA. A review and future prospect of polymer blend mixed matrix membrane for CO2 separation. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1978-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
A novel ternary mixed matrix membrane containing glycerol-modified poly(ether-block-amide) (Pebax 1657)/copper nanoparticles for CO2 separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Abdul Mannan H, Yih TM, Nasir R, Muhktar H, Mohshim DF. Fabrication and characterization of polyetherimide/polyvinyl acetate polymer blend membranes for CO 2/CH 4separation. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hafiz Abdul Mannan
- Department of Chemical Engineering; Universiti Teknologi PETRONAS; Bandar Seri Iskandar Perak 32610 Malaysia
| | - Tan Ming Yih
- Department of Chemical Engineering; Universiti Teknologi PETRONAS; Bandar Seri Iskandar Perak 32610 Malaysia
| | - Rizwan Nasir
- Department of Chemical Engineering; Universiti Teknologi PETRONAS; Bandar Seri Iskandar Perak 32610 Malaysia
- Department of Chemical Engineering; NFC Institute of Engineering and Fertilizer Research; Faisalabad 38090 Pakistan
| | - Hilmi Muhktar
- Department of Chemical Engineering; Universiti Teknologi PETRONAS; Bandar Seri Iskandar Perak 32610 Malaysia
| | - Dzeti Farhah Mohshim
- Department of Petroleum Engineering; Universiti Teknologi PETRONAS; Bandar Seri Iskandar Perak 32610 Malaysia
| |
Collapse
|
19
|
Akbarian I, Fakhar A, Ameri E, Sadeghi M. Gas-separation behavior of poly(ether sulfone)-poly(ethylene glycol) blend membranes. J Appl Polym Sci 2018. [DOI: 10.1002/app.46845] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Iman Akbarian
- Department of Chemical Engineering, Shahreza Branch; Islamic Azad University; Shahreza Iran
| | - Afsaneh Fakhar
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Elham Ameri
- Department of Chemical Engineering, Shahreza Branch; Islamic Azad University; Shahreza Iran
| | - Morteza Sadeghi
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| |
Collapse
|
20
|
Suleman MS, Lau KK, Yeong YF. Enhanced gas separation performance of PSF membrane after modification to PSF/PDMS composite membrane in CO2
/CH4
separation. J Appl Polym Sci 2017. [DOI: 10.1002/app.45650] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Malik Shoaib Suleman
- Department of Chemical Engineering; CO2 Research Center (CO2RES), Universiti Teknologi PETRONAS, Bandar Seri Iskandar; 32610, Perak Malaysia
| | - K. K. Lau
- Department of Chemical Engineering; CO2 Research Center (CO2RES), Universiti Teknologi PETRONAS, Bandar Seri Iskandar; 32610, Perak Malaysia
| | - Y. F. Yeong
- Department of Chemical Engineering; CO2 Research Center (CO2RES), Universiti Teknologi PETRONAS, Bandar Seri Iskandar; 32610, Perak Malaysia
| |
Collapse
|