1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Zhang S, Wang Z, Gao Y, Yamaguchi M, Bao M. Palladium-catalyzed C-H dimethylamination of 1-chloromethyl naphthalenes with N, N-dimethylformamide as the dimethyl amino source. Org Biomol Chem 2023; 21:6687-6692. [PMID: 37547926 DOI: 10.1039/d3ob00600j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Palladium-catalyzed remote C-H dimethylamination of 1-chloromethylnaphthalenes using N,N-dimethylformamide as the dimethylamino source is described for the first time. The dimethylamination took place exclusively at the 4-position of 1-chloromethylnaphthalenes in 2-methyltetrahydrofuran under mild conditions to afford 1-(N,N-dimethylamino)-4-alkylnaphthalenes in good to high yields. The halogen atom remained intact during the dimethylamination of 1-chloromethylnaphthalenes. A P,N bidentate ligand was conveniently synthesized and successfully utilized as the ligand in the Kumada-Corriu reaction.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Ziyang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Ya Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Masahiko Yamaguchi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| |
Collapse
|
3
|
The Development of a 4-aminonaphthalimide-based Highly Selective Fluorescent Probe for Rapid Detection of HOCl. J Fluoresc 2022; 32:1843-1849. [PMID: 35731451 DOI: 10.1007/s10895-022-02996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Recently, more and more evidence indicated that intracellular HOCl plays a crucial role in the regulation of inflammation and apoptosis, while excessive HOCl has an impact on human health problems. So, the development of methods for sensitive detection of HOCl is very vital to reveal its various physiological and pathological functions. In this paper, we have described a simple fluorescent probe for selective detection of HOCl, whereas for higher concentrations of other biological important substances, the probe almost does not respond. The experimental results show that the probe can quantitatively determine the range of 0-1 μM HOCl, the detection limit is 0.05 μM. In addition, the probe reacts quickly with HOCl (< 3 s), which is helpful to monitor HOCl in biological system because HOCl is highly reactive and short-lived. The ability of the probe to HOCl enables it to be used to track the HOCl levels in living systems.
Collapse
|
4
|
Sayresmith NA, Saminathan A, Sailer JK, Patberg SM, Sandor K, Krishnan Y, Walter MG. Photostable Voltage-Sensitive Dyes Based on Simple, Solvatofluorochromic, Asymmetric Thiazolothiazoles. J Am Chem Soc 2019; 141:18780-18790. [PMID: 31660737 DOI: 10.1021/jacs.9b08959] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A family of asymmetric thiazolo[5,4-d]thiazole (TTz) fluorescent dye sensors has been developed, and their photophysical sensing properties are reported. The π-conjugated, TTz-bridged compounds are synthesized via a single-step, double condensation/oxidation of dithiooxamide and two different aromatic aldehydes: one with strong electron-donating characteristics and one with strong electron-accepting characteristics. The four reported dyes include electron-donating moieties (N,N-dibutylaniline and N,N-diphenylaniline) matched with three different electron-accepting moieties (pyridine, benzoic acid, and carboxaldehyde). The asymmetric TTz derivatives exhibit strong solvatofluorochromism with Stokes shifts between 0.269 and 0.750 eV (2270 and 6050 cm-1) and transition dipole moments (Δμ = 13-18 D) that are among the highest reported for push-pull dyes. Fluorescence quantum yields are as high as 0.93 in nonpolar solvents, and the fluorescence lifetimes (τF) vary from 1.50 to 3.01 ns depending on the solvent polarity. In addition, thermofluorochromic studies and spectrophotometric acid titrations were performed and indicate the possibility of using these dyes as temperature and/or acid sensors. In vitro cell studies indicate good cell membrane localization, negligible cytotoxicity, promising voltage sensitivities, and photostabilities that are 4 times higher than comparable dyes. Their ease of synthesis and purification, remarkable photophysical properties, and chemically sensitive TTz π-bridge make these asymmetric dye derivatives attractive for environmental and biological sensing or similar molecular optoelectronic applications.
Collapse
Affiliation(s)
- Nickolas A Sayresmith
- Department of Chemistry , University of North Carolina at Charlotte , Charlotte , North Carolina 28223 , United States
| | - Anand Saminathan
- Department of Chemistry and Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior , University of Chicago , Chicago , Illinois 60637 , United States
| | - Joshua K Sailer
- Department of Chemistry , University of North Carolina at Charlotte , Charlotte , North Carolina 28223 , United States
| | - Shannon M Patberg
- Department of Chemistry , University of North Carolina at Charlotte , Charlotte , North Carolina 28223 , United States
| | - Kristin Sandor
- Department of Chemistry , University of North Carolina at Charlotte , Charlotte , North Carolina 28223 , United States
| | - Yamuna Krishnan
- Department of Chemistry and Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior , University of Chicago , Chicago , Illinois 60637 , United States
| | - Michael G Walter
- Department of Chemistry , University of North Carolina at Charlotte , Charlotte , North Carolina 28223 , United States
| |
Collapse
|
5
|
Zhang Z, Liu H, Pu S. A highly selective fluorescent chemosensor for Cu2+
based on a diarylethene with a 2,1,3-benzoxadiazole unit. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhihui Zhang
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang China
| | - Hongliang Liu
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang China
| |
Collapse
|
6
|
Zhang R, Song B, Yuan J. Bioanalytical methods for hypochlorous acid detection: Recent advances and challenges. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Liu Z, Li G, Wang Y, Li J, Mi Y, Guo L, Xu W, Zou D, Li T, Wu Y. A novel fluorescent probe for imaging the process of HOCl oxidation and Cys/Hcy reduction in living cells. RSC Adv 2018; 8:9519-9523. [PMID: 35541868 PMCID: PMC9078674 DOI: 10.1039/c7ra13419c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/23/2018] [Indexed: 11/29/2022] Open
Abstract
A new on-off-on fluorescent probe, CMOS, based on coumarin was developed to detect the process of hypochlorous acid (HOCl) oxidative stress and cysteine/homocysteine (Cys/Hcy) reduction. The probe exhibited a fast response, good sensitivity and selectivity. Moreover, it was applied for monitoring the redox process in living cells. A new on–off–on fluorescent probe, CMOS, was designed and applied to detect the process of HOCl oxidation and Cys/Hcy reduction.![]()
Collapse
Affiliation(s)
- Zhen Liu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Guoping Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yana Wang
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jiulong Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yang Mi
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Linna Guo
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Wenjian Xu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Tiesheng Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yangjie Wu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
8
|
Xie X, Wang J, Yan Y, Zhang X, Liu C, Yang J, Hua J. A new mitochondria-targeted ratiometric fluorescent probe based on diketopyrrolopyrrole for imaging endogenous HOCl in living cells. Analyst 2018; 143:5736-5743. [DOI: 10.1039/c8an01469h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ratiometric fluorescent probe (PTZ-TDPP) for HOCl detecting based on diketopyrrolopyrrole (DPP) and phenothiazine platform was designed and synthesized. PTZ-TDPP could target mitochondria and successfully applied in detecting endogenous HOCl in living RAW 264.7 cells.
Collapse
Affiliation(s)
- Xiaoxu Xie
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Jian Wang
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Yongchao Yan
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Xiao Zhang
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Chenchen Liu
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Ji Yang
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Jianli Hua
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| |
Collapse
|