1
|
Lu F, Jang MS, Jiang W, Liu C, Wang B, Lee JH, Fu Y, Yang HY. A multifunctional hyaluronic acid-engineered mesoporous nanoreactor with H 2O 2/O 2 self-sufficiency for pH-triggered endo-lysosomal escape and synergetic cancer therapy. BIOMATERIALS ADVANCES 2024; 169:214161. [PMID: 39721571 DOI: 10.1016/j.bioadv.2024.214161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Monotherapy has poor accuracy and is easily restricted by tumor microenvironment (TME). Remodeling components of the TME to activate multimodal cancer therapy with high precision and efficiency is worth exploring. A multifunctional nanoreactor was fabricated by decorating chlorin e6-modified and PEGylated hyaluronic acid bearing diethylenetriamine-conjugated dihydrolipoic acid on the surface of glucose oxidase (GOx)-loaded hollow mesoporous CuS nanoparticles (labeled as GOx@HCuS@HA). This nanoreactor efficiently targets tumor sites, enhances cellular internalization, and swiftly escapes from endo-lysosomes after intravenous injection. Subsequently, GOx@HCuS@HA was activated in hyaluronidase and H + -rich TME to produce H2O2 and gluconic acid through the oxidation of glucose, which not only blocks the energy supply of cancer cells, executing starvation treatment (ST), but also bolsters hydroxyl radicals (•OH)-based chemodynamic therapy (CDT) by Fenton-like reaction between HCuS and H2O2. Furthermore, reductive Cu ions could catalyze H2O2 to produce O2 to alleviate the limitation of photodynamic therapy (PDT) for tumor hypoxia. Additionally, the photothermal effect of HCuS under NIR irradiation could increase the temperature of tumor tissues to perform photothermal therapy (PTT). This synergistic antitumor strategy could ultimately achieve precise tumor cell destruction and maintain excellent biosafety. Hence, this nanoreactor offer promising prospects for efficient tumor treatment.
Collapse
Affiliation(s)
- Fei Lu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Wei Jiang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Bo Wang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, PR China
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| |
Collapse
|
2
|
Yang T, Xie Y, Zhang S, He X. Synthesis of Dual Red‐Emitting Fluorescent Silver Nanoclusters in Aqueous Lipoic Acid‐Based Polymer Solutions and Application for Cu
2+
Detection and Cell Imaging. ChemistrySelect 2022. [DOI: 10.1002/slct.202200185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tao Yang
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Yangchun Xie
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy East China Normal University Shanghai 200241 China
| | - Xiaohua He
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| |
Collapse
|
3
|
Nguyen TLA, Doan THN, Truong DH, Ai Nhung NT, Quang DT, Khiri D, Taamalli S, Louis F, El Bakali A, Dao DQ. Antioxidant and UV-radiation absorption activity of aaptamine derivatives - potential application for natural organic sunscreens. RSC Adv 2021; 11:21433-21446. [PMID: 35478841 PMCID: PMC9034140 DOI: 10.1039/d1ra04146k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Antioxidant and UV absorption activities of three aaptamine derivatives including piperidine[3,2-b]demethyl(oxy)aaptamine (C1), 9-amino-2-ethoxy-8-methoxy-3H-benzo[de][1,6]naphthyridine-3-one (C2), and 2-(sec-butyl)-7,8-dimethoxybenzo[de]imidazo[4,5,1-ij][1,6]-naphthyridin-10(9H)-one (C3) were theoretically studied by density functional theory (DFT). Direct antioxidant activities of C1-C3 were firstly evaluated via their intrinsic thermochemical properties and the radical scavenging activity of the potential antioxidants with the HOO˙/HO˙ radicals via four mechanisms, including: hydrogen atom transfer (HAT), single electron transfer (SET), proton loss (PL) and radical adduct formation (RAF). Kinetic calculation reveals that HOO˙ scavenging in water occurs via HAT mechanism with C1 (k app, 7.13 × 106 M-1 s-1) while RAF is more dominant with C2 (k app, 1.40 × 105 M-1 s-1) and C3 (k app, 2.90 × 105 M-1 s-1). Antioxidant activity of aaptamine derivatives can be classified as C1 > C3 > C2. Indirect antioxidant properties based on Cu(i) and Cu(ii) ions chelating activity were also investigated in aqueous phase. All three studied compounds show spontaneous and favorable Cu(i) ion chelating activity with ΔG 0 being -15.4, -13.7, and -15.7 kcal mol-1, whereas ΔG 0 for Cu(ii) chelation are -10.4, -10.8, and -2.2 kcal mol-1 for C1, C2 and C3, respectively. In addition, all compounds show UVA and UVB absorption; in which the excitations are determined mostly as π-π* transition. Overall, the results suggest the potential applications of the aaptamines in pharmaceutics and cosmetics, i.e. as a sunscreen and antioxidant ingredient.
Collapse
Affiliation(s)
- Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Thi Hoai Nam Doan
- Department of Chemistry, Danang University of Science and Technology, The University of Danang Da Nang 550000 Vietnam
| | - Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University Hue 530000 Vietnam
| | - Duong Tuan Quang
- Department of Chemistry, University of Education, Hue University Hue 530000 Vietnam
| | - Dorra Khiri
- Université de Lille, CNRS, UMR 8522, PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère 59000 Lille France
| | - Sonia Taamalli
- Université de Lille, CNRS, UMR 8522, PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère 59000 Lille France
| | - Florent Louis
- Université de Lille, CNRS, UMR 8522, PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère 59000 Lille France
| | - Abderrahman El Bakali
- Université de Lille, CNRS, UMR 8522, PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère 59000 Lille France
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
4
|
García-Díez G, Mora-Diez N. Theoretical Study of the Iron Complexes with Aminoguanidine: Investigating Secondary Antioxidant Activity. Antioxidants (Basel) 2020; 9:E756. [PMID: 32824195 PMCID: PMC7463863 DOI: 10.3390/antiox9080756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
A thorough analysis of the thermodynamic stability of various complexes of aminoguanidine (AG) with Fe(III) at a physiological pH is presented. Moreover, the secondary antioxidant activity of AG is studied with respect to its kinetic role in the Fe(III) reduction to Fe(II) when reacting with the superoxide radical anion or ascorbate. Calculations are performed at the M05(SMD)/6-311+G(d,p) level of theory. Solvent effects (water) are taken into account in both geometry optimizations and frequency calculations employing the SMD solvation method. Even though the results of this study show that AG can form an extensive number of stable complexes with Fe(III), none of these can reduce the rate constant of the initial step of the Haber-Weiss cycle when the reducing agent is O2•-. However, when the reductant is the ascorbate anion, AG is capable of reducing the rate constant of this reaction significantly, to the point of inhibiting the production of •OH radicals. In fact, the most stable complex of Fe(III) with AG, having a ∆Gf° of -37.9 kcal/mol, can reduce the rate constant of this reaction by 7.9 × 105 times. Thus, AG possesses secondary antioxidant activity relative to the Fe(III)/Fe(II) reduction with ascorbate, but not with O2•-. Similar results have also been found for AG relative to the Cu(II)/Cu(I) reduction, in agreement with experimental results.
Collapse
Affiliation(s)
| | - Nelaine Mora-Diez
- Department of Chemistry, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada;
| |
Collapse
|
5
|
Monreal-Corona R, Biddlecombe J, Ippolito A, Mora-Diez N. Theoretical Study of the Iron Complexes with Lipoic and Dihydrolipoic Acids: Exploring Secondary Antioxidant Activity. Antioxidants (Basel) 2020; 9:E674. [PMID: 32731543 PMCID: PMC7465238 DOI: 10.3390/antiox9080674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/19/2022] Open
Abstract
The thermodynamic stability of twenty-nine Fe(III) complexes with various deprotonated forms of lipoic (LA) and dihydrolipoic (DHLA) acids, with coordination numbers 4, 5 and 6, is studied at the M06(SMD)/6-31++G(d,p) level of theory in water under physiological pH conditions at 298.15 K. Even though the complexes with LA- are more stable than those with DHLA-, the most thermodynamically stable Fe(III) complexes involve DHLA2-. The twenty-four exergonic complexes are used to evaluate the secondary antioxidant activity of DHLA and LA relative to the Fe(III)/Fe(II) reduction by O2•- and ascorbate. Rate constants for the single-electron transfer (SET) reactions are calculated. The thermodynamic stability of the Fe(III) complexes does not fully correlate with the rate constant of their SET reactions, but more exergonic complexes usually exhibit smaller SET rate constants. Some Cu(II) complexes and their reduction to Cu(I) are also studied at the same level of theory for comparison. The Fe(III) complexes appear to be more stable than their Cu(II) counterparts. Relative to the Fe(III)/Fe(II) reduction with ascorbate, DHLA can fully inhibit the formation of •OH radicals, but not by reaction with O2•-. Relative to the Cu(II)/Cu(I) reduction with ascorbate, the effects of DHLA are moderate/high, and with O2•- they are minor. LA has minor to negligible inhibition effects in all the cases considered.
Collapse
Affiliation(s)
| | | | | | - Nelaine Mora-Diez
- Department of Chemistry, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada; (R.M.-C.); (J.B.); (A.I.)
| |
Collapse
|
6
|
García-Díez G, Ramis R, Mora-Diez N. Theoretical Study of the Copper Complexes with Aminoguanidine: Investigating Secondary Antioxidant Activity. ACS OMEGA 2020; 5:14502-14512. [PMID: 32596588 PMCID: PMC7315568 DOI: 10.1021/acsomega.0c01175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
A systematic study of the thermodynamic stability of various Cu(II) complexes with aminoguanidine (AG) is performed, together with the study of its secondary antioxidant activity. Calculations have been carried out at the M05(SMD)/6-311+G(d,p) level of theory using water as the solvent. The results obtained indicate that AG is capable of forming a wide array of stable coordination compounds with Cu(II) under physiological pH conditions, and it possesses some degree of secondary antioxidant activity when coordinating to copper. The most thermodynamically stable complex can slow down 2.8 times the first step of the Haber-Weiss cycle (from 7.71 × 109 to 2.80 × 109 M-1 s-1) and slightly reduce the potential damage that the formation of •OH radicals can cause. The results of this research add to previous knowledge on this molecule, which could be used as a potential glycation inhibitor.
Collapse
Affiliation(s)
- Guillermo García-Díez
- Department
of Chemistry, Thompson Rivers University, Kamloops, British Columbia V2C 0C8, Canada
| | - Rafael Ramis
- Departament
de Química, Universitat de les Illes
Balears, Palma de Mallorca 07122, Spain
| | - Nelaine Mora-Diez
- Department
of Chemistry, Thompson Rivers University, Kamloops, British Columbia V2C 0C8, Canada
| |
Collapse
|
7
|
Carreon-Gonzalez M, Vivier-Bunge A, Alvarez-Idaboy JR. Thiophenols, Promising Scavengers of Peroxyl Radicals: Mechanisms and kinetics. J Comput Chem 2019; 40:2103-2110. [PMID: 31124582 DOI: 10.1002/jcc.25862] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/13/2019] [Accepted: 05/05/2019] [Indexed: 01/03/2023]
Abstract
The activity of 12 thiophenols as primary antioxidants in aqueous solution has been studied using density functional theory. Twelve different substituted thiophenols were tested as peroxyl radicals scavengers. Single electron transfer (SET) and formal hydrogen transfer (FHT) were investigated. The SET mechanism was found to be the main mechanism, with rate constants that are close to the diffusion limit, which means that these thiophenolic compounds have the capacity to scavenge peroxyl radicals before they can damage biomolecules. All 12 thiophenolic compounds react faster with methylperoxyl than with hydroperoxyl radicals. In addition, it was found that pH plays an important role in the reactivity of these compounds. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mirzam Carreon-Gonzalez
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Annik Vivier-Bunge
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, 09340, Mexico
| | - Juan Raul Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|