1
|
Tu H, Gao K, Zhang B, Chen Z, Wang P, Li Z. Comparative study of poly tannic acid functionalized magnetic particles before and after modification for immobilized penicillin G acylase. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:823-846. [PMID: 34935604 DOI: 10.1080/09205063.2021.2021352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this work, Fe3O4 nanoparticles (NPs) was synthesized by inverting microemulsion method. After that, based on the physical and chemical properties of tannic acid (TA), poly tannic acid (PTA) was coated on Fe3O4 NPs surface. Fe3O4 NPs coated with PTA, on the one hand, was used to immobilize Penicillin G acylase (PGA) by physical adsorption. On the other hand, it was modified by glutaraldehyde (GA). GA grafting rate (Gr-GA) was optimized, and the Gr-GA was 30.0% under the optimum conditions. Then, through the Schiff base reaction between the glutaraldehyde group and PGA amino group, this covalent immobilization of PGA was further realized under mild conditions. Finally, the structures of every stage of magnetic composites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibration magnetometer (VSM) and transmission electron microscopy (TEM), respectively. The results indicated that the enzyme activity (EA), enzyme activity recovery (EAR) and maximum load (ELC) of the immobilized PGA were 26843 U/g, 80.2% and 125 mg/g, respectively. Compared to the physical immobilization of PGA by only coating PTA nanoparticles, further modified nanoparticles by GA showed higher catalytic stability, reusability and storage stability.
Collapse
Affiliation(s)
- Hongyi Tu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, China
| | - Kaikai Gao
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, China
| | - Boyuan Zhang
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, China
| | - Zhenbin Chen
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, China
| | - Pingbo Wang
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, China
| | - Zhizhong Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
2
|
Zhang B, Zhou Y, Liu C, Abdelrahman Mohammed MA, Chen Z, Chen Z. Immobilized penicillin G acylase with enhanced activity and stability using glutaraldehyde-modified polydopamine-coated Fe 3 O 4 nanoparticles. Biotechnol Appl Biochem 2022; 69:629-641. [PMID: 33650711 DOI: 10.1002/bab.2138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/24/2021] [Indexed: 01/01/2023]
Abstract
In this work, Fe3 O4 nanoparticles (NPs) were coated with polydopamine (PDA) to structure Fe3 O4 @PDA NPs by the spontaneous oxygen-mediated self-polymerization of dopamine (DA) in an aqueous solution of pH = 8.5. The fabricated Fe3 O4 @PDA NPs were grafted by glutaraldehyde to realize the immobilization of penicillin G acylase (PGA) under mild conditions. The carriers of each stage were characterized and investigated by transmission electron microscopy, X-ray diffraction, Fourier transform infrared, and vibrating sample magnetometry. To improve the catalytic activity and stability of immobilized PGA, the immobilization conditions were investigated and optimized. Under the optimal immobilization conditions, the enzyme loading capacity, enzyme activity, and enzyme activity recovery of immobilized PGA were 114 mg/g, 26,308 U/g, and 78.5%, respectively. In addition, the immobilized PGA presented better temperature and pH stability compared with free PGA. The reusability study ensured that the immobilized PGA showed an excellent repeating application performance. In particular, the recovery rate of immobilized PGA could reach 94.8% and immobilized PGA could retain 73.0% of its original activity after 12 cycles, indicating that the immobilized PGA exhibited a high operation stability and broad application potential in the biocatalysis field.
Collapse
Affiliation(s)
- Boyuan Zhang
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Yongshan Zhou
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Chunli Liu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Monier Alhadi Abdelrahman Mohammed
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Zhangjun Chen
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Zhenbin Chen
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
3
|
Bashir MS, Jiang X, Li S, Kong XZ. Highly Uniform and Porous Polyurea Microspheres: Clean and Easy Preparation by Interface Polymerization, Palladium Incorporation, and High Catalytic Performance for Dye Degradation. Front Chem 2019; 7:314. [PMID: 31139616 PMCID: PMC6518977 DOI: 10.3389/fchem.2019.00314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/23/2019] [Indexed: 11/24/2022] Open
Abstract
Owing to their high specific surface area and low density, porous polymer materials are of great importance in a vast variety of applications, particularly as supports for enzymes and transition metals. Herein, highly uniform and porous polyurea microspheres (PPM), with size between 200 and 500 μm, are prepared by interfacial polymerization of toluene diisocyanate (TDI) in water through a simple microfluidic device composed of two tube lines, in one of which TDI is flowing and merged to the other with flowing aqueous phase, generating therefore TDI droplets at merging. The polymerization starts in the tube while flowing to the reactor and completed therein. This is a simple, easy and effective process for preparation of uniform PPM. Results demonstrate that the presence of polyvinyl alcohol in the aqueous flow is necessary to obtain uniform PPM. The size of PPM is readily adjustable by changing the polymerization conditions. In addition, palladium is incorporated in PPM to get the composite microspheres Pd@PPM, which are used as catalyst in degradation of methylene blue and rhodamine B. High performance and good reusability are demonstrated. Monodispersity, efficient dye degradation, easy recovery, and remarkable reusability make Pd@PPM a promising catalyst for dye degradation.
Collapse
Affiliation(s)
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| |
Collapse
|
4
|
Xia Y, Liu Y, Shi N, Zhang X. Highly efficient reduction of 4-nitrophenolate to 4-aminophenolate by Au/γ-Fe 2O 3@HAP magnetic composites. RSC Adv 2019; 9:10272-10281. [PMID: 35520938 PMCID: PMC9062375 DOI: 10.1039/c9ra00345b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/24/2019] [Indexed: 01/20/2023] Open
Abstract
In this article, the catalyst Au/γ-Fe2O3@hydroxyapatite (Au/γ-Fe2O3@HAP) consisting of Au nanoparticles supported on the core-shell structure γ-Fe2O3@HAP was prepared through a deposition-precipitation method. The catalyst was characterized by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, N2 adsorption-desorption and atomic absorption spectrometry. The as-prepared Au/γ-Fe2O3@HAP exhibited excellent performance for the reduction of 4-nitrophenolate (4-NP) to 4-aminophenolate (4-AP) in the presence of NaBH4 at room temperature. Thermodynamic and kinetic data on the reduction of 4-NP to 4-AP catalyzed by the as-prepared catalyst were studied. The as-prepared catalyst could be easily separated by a magnet and recycled 6 times with over 92% conversion of 4-NP to 4-AP. In addition, the as-prepared catalyst showed excellent catalytic performance on other nitrophenolates. The TOF value of this work on the reduction of 4-NP to 4-AP was 241.3 h-1. Au/γ-Fe2O3@HAP might have a promising potential application on the production of 4-AP and its derivatives.
Collapse
Affiliation(s)
- Yide Xia
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei China
| | - Ying Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei China
| | - Nannan Shi
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei China
| | - Xungao Zhang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei China
| |
Collapse
|
5
|
Ma M, Yang Y, Liao D, Lyu P, Zhang J, Liang J, Zhang L. Synthesis, characterization and catalytic performance of core-shell structure magnetic Fe3
O4
/P(GMA-EGDMA)-NH2
/HPG-COOH-Pd catalyst. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4708] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mingliang Ma
- Research Institute of Functional Materials, School of Civil Engineering; Qingdao University of Technology; 11 Fushun Road Qingdao 266033 China
| | - Yuying Yang
- Research Institute of Functional Materials, School of Civil Engineering; Qingdao University of Technology; 11 Fushun Road Qingdao 266033 China
| | - Dili Liao
- Research Institute of Functional Materials, School of Civil Engineering; Qingdao University of Technology; 11 Fushun Road Qingdao 266033 China
| | - Ping Lyu
- Research Institute of Functional Materials, School of Civil Engineering; Qingdao University of Technology; 11 Fushun Road Qingdao 266033 China
| | - Jinwei Zhang
- Research Institute of Functional Materials, School of Civil Engineering; Qingdao University of Technology; 11 Fushun Road Qingdao 266033 China
| | - Jianli Liang
- Research Institute of Functional Materials, School of Civil Engineering; Qingdao University of Technology; 11 Fushun Road Qingdao 266033 China
| | - Lizhi Zhang
- Research Institute of Functional Materials, School of Civil Engineering; Qingdao University of Technology; 11 Fushun Road Qingdao 266033 China
| |
Collapse
|
6
|
Zhang B, Wang J, Chen J, Zhang H, Yin D, Zhang Q. Magnetic mesoporous microspheres modified with hyperbranched amine for the immobilization of penicillin G acylase. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|