1
|
Abdollahi A, Rahmanidoust M, Hanaei N, Dashti A. All-in-One Photoluminescent Janus Nanoparticles for Smart Technologies: Organic Light-Emitting Diodes, Anticounterfeiting, and Optical Sensors. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
2
|
Modified cellulose paper with photoluminescent acrylic copolymer nanoparticles containing fluorescein as pH-sensitive indicator. Carbohydr Polym 2022; 296:119965. [DOI: 10.1016/j.carbpol.2022.119965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
|
3
|
Gao Y, Zhang W, Han N, Zhang X, Li W. Cotton fabric containing photochromic microcapsules combined thermal energy storage features. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Razavi B, Roghani-Mamaqani H, Salami-Kalajahi M. Development of highly sensitive metal-ion chemosensor and key-lock anticounterfeiting technology based on oxazolidine. Sci Rep 2022; 12:1079. [PMID: 35058519 PMCID: PMC8776736 DOI: 10.1038/s41598-022-05098-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022] Open
Abstract
Optical chemosensors and ionochromic cellulosic papers based on oxazolidine chromophores were developed for selective photosensing of metal ions and information encryption as security tags, respectively. The oxazolidine molecules have been displayed highly intense fluorescent emission and coloration characteristics that are usable in sensing and anticounterfeiting applications. Obtained results indicated that oxazolidine molecules can be used for selective detection of pb2+ (0.01 M), and photosensing of Fe3+, Co2+ and Ag+ metal ion solutions by colorimetric and fluorometric mechanisms with higher intensity and sensitivity. Also, oxazolidine derivatives were coated on cellulosic papers via layer-by-layer method to prepare ionochromic papers. Prepared ionochromic papers were used for printing and handwriting of optical security tags by using of metal ion solutions as a new class of anticounterfeiting inks with dual-mode fluorometric and colorimetric securities. The ionochromic cellulosic papers can be used for photodetection of metal ions in a fast and facile manner that presence of metal ions is detectable by naked eyes. Also, key-lock anticounterfeiting technology based on ionochromic papers and metal ion solution as ink is the most significant strategy for encryption of information to optical tags with higher security.
Collapse
|
6
|
Nawaz H, Zhang X, Chen S, You T, Xu F. Recent studies on cellulose-based fluorescent smart materials and their applications: A comprehensive review. Carbohydr Polym 2021; 267:118135. [PMID: 34119124 DOI: 10.1016/j.carbpol.2021.118135] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
The progress of bio-based fluorescent smart materials and their multifunctional applications have attained increasing interest in the recent decades. Cellulose is among the cheapest and widespread raw material on earth which can be modified into diverse useful materials. This review summarizes the chemical modification of cellulose into smart fluorescent materials. This further highlights on the fabrication of the prepared fluorescent materials into films, fibers, paper strips, carbon dots, hydrogels and solutions which are applied for the sensing of toxic metals and anions, pH, bioimaging, common organic solvents, aliphatic and aromatic amines, nitroaromatics, fluorescent printing, coating, and anti-counterfeiting applications. Finally, the discussion about the upcoming investigations, challenges, and options open for the cellulose-based luminescence sensors are communicated. We believe that this review will appeal more and more attention and curiosity for the chemists, biochemists, and chemical engineers working with the synthesis of cellulose-based fluorescent materials for widespread applications.
Collapse
Affiliation(s)
- Haq Nawaz
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Xun Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
7
|
Oderinde O, Ejeromedoghene O, Fu G. Synthesis and properties of
low‐cost
, photochromic transparent hydrogel based on ethaline‐assisted binary tungsten
oxide‐molybdenum
oxide nanocomposite for optical memory applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Olayinka Oderinde
- School of Chemistry and Chemical Engineering Southeast University, Jiulonghu Campus Nanjing China
- Department of Chemical Sciences, Faculty of Basic Medical and Applied Sciences Lead City University Ibadan Nigeria
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering Southeast University, Jiulonghu Campus Nanjing China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering Southeast University, Jiulonghu Campus Nanjing China
| |
Collapse
|
8
|
Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M, Razavi B. Encryption and authentication of security patterns by ecofriendly multi-color photoluminescent inks containing oxazolidine-functionalized nanoparticles. J Colloid Interface Sci 2020; 580:192-210. [PMID: 32683117 DOI: 10.1016/j.jcis.2020.06.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Counterfeiting of confidential documents has been a costly challenge for banks, companies, and customers. Encryption of invisible security marks, such as barcodes, quick response codes, and logos, in national or international confidential documents by high-security anticounterfeiting inks is the most significant solution for counterfeiting problems. Ecofriendly multi-color photoluminescent anticounterfeiting inks based on highly-fluorescent polymer nanoparticles functionalized with new oxazolidine derivatives were developed for the fast and facile encryption of security labels on cellulosic documents, such as paper currency, passport, and certificate. Depending on the polarity of functionalized polymer nanoparticles, a wide range of colors and fluorescence emissions were observed as a result of polar-polar interactions between the oxazolidine molecules and surface functional groups of the nanoparticles. The fluorescent polymer nanoparticles showed spherical, vesicular, and cauliflower-like morphologies resulted from different surface functional groups. Functional polymer nanoparticles displayed high stability and printability on cellulosic substrates due to hydrogen bonding interactions. The highly-fluorescent polymer nanoparticles were also used to prepare anticounterfeiting inks with different colors and fluorescence emissions. All the ecofriendly polymeric anticounterfeiting inks were loaded to stamps with specific marks, and then applied to different confidential documents. Printed labels displayed highly intense fluorescence emission in different colors (green, orange, pink, and purple depending on the matrix polarity) under UV irradiation (365 nm). These water-based multi-color fluorescent anticounterfeiting inks with highly intense, bright, and sensitive fluorescence emission have potential applications in encryption and authentication of security patterns.
Collapse
Affiliation(s)
- Amin Abdollahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran
| |
Collapse
|
9
|
F Reis I, Miguez FB, Vargas CAA, Menzonatto TG, Silva IMS, Verano-Braga T, Lopes JF, Brandão TAS, De Sousa FB. Structural and Electronic Characterization of a Photoresponsive Lanthanum(III) Complex Incorporated into Electrospun Fibers for Phosphate Ester Catalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28607-28615. [PMID: 32463219 DOI: 10.1021/acsami.0c03571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we present the light-induced synthesis and characterization of a La3+/spiropyran derivative complex (LaMC) and its application as a catalyst when incorporated into electrospun polycaprolactone (PCL) fibers. In addition to experimental methods, computational calculations were also essential to better understand the structure and electronic characteristics of LaMC. The LaMC complex was identified as a 10-coordinated structure with the La3+ ion coordinated by four oxygens from the phenolate and the carbonyl of the carboxyl acid group from both MC ligands and by six oxygens from three nitrate ligands. In addition, LaMC was capable of getting reversibly isomerized by UV or visible light cycling. All PCL fibers were successively obtained, and their morphologies, surface properties, and catalytic behavior were studied. Results showed that PCL/LaMC fibers were capable of catalyzing bis(2,4-dinitrophenyl)phosphate degradation efficiently. Complete hydrolysis was accomplished in only 1.5 days relative to the half-life time of 35 days for the uncatalyzed hydrolysis at pH 8.1 and 25 °C.
Collapse
Affiliation(s)
- Izadora F Reis
- Laboratório de Sistemas Poliméricos e Supramoleculares (LSPS) -Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| | - Flávio B Miguez
- Laboratório de Sistemas Poliméricos e Supramoleculares (LSPS) -Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| | - Carlos A Amaya Vargas
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Thiago G Menzonatto
- Laboratório de Química Computacional (LaQC)-Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| | - Igor M S Silva
- Departamento de Fisiologia e Biofísica-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Thiago Verano-Braga
- Departamento de Fisiologia e Biofísica-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Juliana Fedoce Lopes
- Laboratório de Química Computacional (LaQC)-Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| | - Tiago A S Brandão
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Frederico B De Sousa
- Laboratório de Sistemas Poliméricos e Supramoleculares (LSPS) -Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| |
Collapse
|
10
|
Barbosa P, Sousa CM, Coelho PJ. Color switching transparent materials based on vinylidene-naphthofurans. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Extraction of Cellulose Nanofibers via Eco-friendly Supercritical Carbon Dioxide Treatment Followed by Mild Acid Hydrolysis and the Fabrication of Cellulose Nanopapers. Polymers (Basel) 2019; 11:polym11111813. [PMID: 31694184 PMCID: PMC6918378 DOI: 10.3390/polym11111813] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 11/17/2022] Open
Abstract
The conventional isolation of cellulose nanofibers (CNFs) process involves high energy input which leads to compromising the pulp fiber's physical and chemical properties, in addition to the issue of elemental chlorine-based bleaching, which is associated with serious environmental issues. This study investigates the characteristic functional properties of CNFs extracted via total chlorine-free (TCF) bleached kenaf fiber followed by an eco-friendly supercritical carbon dioxide (SC-CO2) treatment process. The Fourier transmission infra-red FTIR spectra result gave remarkable effective delignification of the kenaf fiber as the treatment progressed. TEM images showed that the extracted CNFs have a diameter in the range of 10-15 nm and length of up to several micrometers, and thereby proved that the supercritical carbon dioxide pretreatment followed by mild acid hydrolysis is an efficient technique to extract CNFs from the plant biomass. XRD analysis revealed that crystallinity of the fiber was enhanced after each treatment and the obtained crystallinity index of the raw fiber, alkali treated fiber, bleached fiber, and cellulose nanofiber were 33.2%, 54.6%, 88.4%, and 92.8% respectively. SEM images showed that amorphous portions like hemicellulose and lignin were removed completely after the alkali and bleaching treatment, respectively. Moreover, we fabricated a series of cellulose nanopapers using the extracted CNFs suspension via a simple vacuum filtration technique. The fabricated cellulose nanopaper exhibited a good tensile strength of 75.7 MPa at 2.45% strain.
Collapse
|
12
|
Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101149] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Stimuli-responsive cellulose paper materials. Carbohydr Polym 2019; 210:350-363. [DOI: 10.1016/j.carbpol.2019.01.082] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/12/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
|
14
|
Abdollahi A, Sahandi-Zangabad K, Roghani-Mamaqani H. Light-Induced Aggregation and Disaggregation of Stimuli-Responsive Latex Particles Depending on Spiropyran Concentration: Kinetics of Photochromism and Investigation of Reversible Photopatterning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13910-13923. [PMID: 30395471 DOI: 10.1021/acs.langmuir.8b02296] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Light-controlling the physical and chemical properties of smart polymers by using photochromic compounds has been an interesting research subject. Incorporation of spiropyran (SP) on the surface of particles can induce photoswitchable aggregation/disaggregation to stimuli-responsive colloids. Herein, we developed a novel class of stimuli-responsive latex particles bearing SP with different contents (0, 0.5, 1, 3, and 5 wt %) by semicontinuous emulsifier-free emulsion copolymerization, which is able to change the particle size by light-induced aggregation/disaggregation in response to ultraviolet (UV) irradiation and visible light. The scanning electron microscopy images revealed the spherical morphology of the latex particles, with the size in the range of 400-900 nm. Light-induced aggregation and disaggregation of stimuli-responsive latex particles were investigated by dynamic light scattering and also confirmed by variation of transmittance during UV illumination time using ultraviolet-visible spectroscopy. The range of the light-induced shift in the particle size is about 200-600 nm (depending on the concentration of SP), where the reduction of transmittance upon UV irradiation (and conversely upon visible light) confirms the ability of latex particles for displaying reversible photoswitchable aggregation/disaggregation and also light-controlling the particle size. The kinetics of SP to merocyanine (MC) and MC to SP isomerizations were experimentally investigated and fitted by exponential equations. The photochromic latexes displayed remarkable photoswitchability and photofatigue resistant properties under alternating UV and visible light irradiation cycles. Additionally, these stimuli-responsive latexes displayed potential applications such as anticounterfeiting inks in erasable and rewritable writings on cellulosic papers for increasing safety in security documents.
Collapse
Affiliation(s)
- Amin Abdollahi
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box: 51335-1996, Tabriz 51368 , Iran
| | - Keyvan Sahandi-Zangabad
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box: 51335-1996, Tabriz 51368 , Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box: 51335-1996, Tabriz 51368 , Iran
| |
Collapse
|
15
|
Abdollahi A, Sahandi-Zangabad K, Roghani-Mamaqani H. Rewritable Anticounterfeiting Polymer Inks Based on Functionalized Stimuli-Responsive Latex Particles Containing Spiropyran Photoswitches: Reversible Photopatterning and Security Marking. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39279-39292. [PMID: 30379526 DOI: 10.1021/acsami.8b14865] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Increase of safety in security documents by using anticounterfeiting inks based on fluorochromic and photochromic compounds has attracted a great deal of attention in the recent years. Herein, we developed novel functionalized stimuli-responsive latex particles containing spiropyran (1 wt %) by semicontinuous emulsifier-free emulsion polymerization, which are usable as anticounterfeiting inks for marking on security documents and also photopatterning on cellulosic papers. The size and morphology of the latex particles were characterized by scanning electron microscopy and dynamic light scattering and their functionality was characterized by Fourier-transform infrared spectroscopy. All the stimuli-responsive latexes are composed of spherical particles with different hydroxyl, epoxy, and carboxylic acid functional groups, and the size of the particles varies in the range of 400-900 nm. Additionally, the latex particles undergo a remarkable light-induced size variation (aggregation-disaggregation) upon UV illumination (365 nm), depending on the functional group type, as a result of π-π stacking interactions and also electrostatic attractions between the different particles. The photochromic behavior, kinetics of the SP ⇌ MC isomerization, photoswitchability, and photofatigue-resistant characteristics of the prepared latexes were extensively investigated. The results display that the photochromic behavior and SP ⇌ MC isomerization can significantly be influenced by the polar interactions between the functional groups and MC molecules. As a novel application, the prepared stimuli-responsive latexes were used as anticounterfeiting inks for writing on cellulosic paper and also security marking on several monies, where the written phrase displayed red fluorescence emission and coloration under and after UV illumination (365 nm), respectively. Additionally, the latexes were sprayed on cellulosic papers to prepare stimuli-responsive papers for investigation of their photopatterning ability under UV irradiation and different masking. The presence of functional groups and large particle sizes are the main effective factors for stabilization of the latex particles on cellulosic papers. This is the first report on application of functionalized stimuli-responsive latex particles containing spiropyran as anticounterfeiting inks for security marking and photopatterning on cellulosic papers, directly and without using further additives.
Collapse
Affiliation(s)
- Amin Abdollahi
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box 51335-1996, Tabriz 51368 , Iran
| | - Keyvan Sahandi-Zangabad
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box 51335-1996, Tabriz 51368 , Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box 51335-1996, Tabriz 51368 , Iran
| |
Collapse
|
16
|
Abdollahi A, Mouraki A, Sharifian MH, Mahdavian AR. Photochromic properties of stimuli-responsive cellulosic papers modified by spiropyran-acrylic copolymer in reusable pH-sensors. Carbohydr Polym 2018; 200:583-594. [DOI: 10.1016/j.carbpol.2018.08.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/21/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
|
17
|
Genovese ME, Abraham S, Caputo G, Nanni G, Kumaran SK, Montemagno CD, Athanassiou A, Fragouli D. Photochromic Paper Indicators for Acidic Food Spoilage Detection. ACS OMEGA 2018; 3:13484-13493. [PMID: 31458057 PMCID: PMC6645322 DOI: 10.1021/acsomega.8b02570] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 05/30/2023]
Abstract
A photoresponsive microstructured composite is fabricated through the impregnation of cellulosic filter paper (FP) with a spiropyran-modified acrylic polymer. The polymer enwraps uniformly each individual cellulose fiber, increases the thermal stability of cellulose, and ensures the preservation of the composite functionalities even upon removal of the surface layers through mechanical scratching. The photochromic spiropyran moieties of the polymer, even while embedded in the cellulosic sheet, can reversibly interconvert between the colorless spiropyran and the pink merocyanine isomeric states upon irradiation with UV and visible light, respectively. Moreover, the photochromic polymer presents a faster photochromic response and a higher resistance to photodegradation, with an outstanding reusability for more than 100 switching cycles when it is incorporated in the cellulose network. Most importantly, the acidochromism of the modified FP, attributed to the spiropyran molecules after UV activation, allows the real-time optical and visual detection of acidity changes and spoilage in food products, such as wine and milk. Spoilage due to bacterial degradation and oxidation processes generates acidic vapors that induce the protonation of the merocyanine. This results in a visually detectable chromic transition from pink to white of the treated cellulose fibers, corresponding to a blue shift in the absorption spectrum. The developed photoresponsive cellulose composite can serve as cost-effective robust optical component in integrated functional platforms and consumer-friendly indicators for smart food packaging, as well as portable on demand acidoresponsive interfaces for gas monitoring in industrial and environmental applications.
Collapse
Affiliation(s)
- Maria E. Genovese
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Sinoj Abraham
- Department
of Chemical and Materials Engineering, University
of Alberta, 9211-116 Street NW, Edmonton T6G 1H9, Canada
| | - Gianvito Caputo
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Gabriele Nanni
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Surjith K. Kumaran
- Department
of Chemical and Materials Engineering, University
of Alberta, 9211-116 Street NW, Edmonton T6G 1H9, Canada
| | - Carlo D. Montemagno
- Southern
Illinois University, 1230 Lincoln Drive, Carbondale, Illinois 62901, United
States
| | | | - Despina Fragouli
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
18
|
Mangiante G, Alcouffe P, Gaborieau M, Zeno E, Petit-Conil M, Bernard J, Charlot A, Fleury E. Biohybrid cellulose fibers: Toward paper materials with wet strength properties. Carbohydr Polym 2018; 193:353-361. [DOI: 10.1016/j.carbpol.2018.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 10/17/2022]
|
19
|
Böhm A, Trosien S, Avrutina O, Kolmar H, Biesalski M. Covalent Attachment of Enzymes to Paper Fibers for Paper-Based Analytical Devices. Front Chem 2018; 6:214. [PMID: 29998096 PMCID: PMC6030327 DOI: 10.3389/fchem.2018.00214] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/25/2018] [Indexed: 12/03/2022] Open
Abstract
Due to its unique material properties, paper offers many practical advantages as a viable platform for sensing devices. In view of paper-based microfluidic biosensing applications, the covalent immobilization of enzymes with preserved functional activity is highly desirable and ultimately challenging. In the present manuscript, we report an efficient approach to achieving the covalent attachment of certain enzymes on paper fibers via a surface-bound network of hydrophilic polymers bearing protein-modifiable sites. This tailor-made macromolecular system consisting of polar, highly swellable copolymers is anchored to the paper exterior upon light-induced crosslinking of engineered benzophenone motifs. On the other hand, this framework contains active esters that can be efficiently modified by the nucleophiles of biomolecules. This strategy allowed the covalent immobilization of glucose oxidase and horseradish peroxidase onto cotton linters without sacrificing their bioactivities and performance upon surface binding. As a proof-of-concept application, a microfluidic chromatic paper-based glucose sensor was developed and achieved successful glucose detection in a simple yet efficient cascade reaction.
Collapse
Affiliation(s)
- Alexander Böhm
- Laboratory of Macromolecular Chemistry and Paper Chemistry, Department of Chemistry, Ernst-Berl Institute of Chemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Simon Trosien
- Laboratory of Macromolecular Chemistry and Paper Chemistry, Department of Chemistry, Ernst-Berl Institute of Chemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Olga Avrutina
- Laboratory of Biochemistry, Department of Chemistry, Clemens-Schöpf Institute of Chemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Laboratory of Biochemistry, Department of Chemistry, Clemens-Schöpf Institute of Chemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Markus Biesalski
- Laboratory of Macromolecular Chemistry and Paper Chemistry, Department of Chemistry, Ernst-Berl Institute of Chemistry, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|