1
|
Kang J, Valenzuela SA, Lin EY, Dominguez MN, Sherman ZM, Truskett TM, Anslyn EV, Milliron DJ. Colorimetric quantification of linking in thermoreversible nanocrystal gel assemblies. SCIENCE ADVANCES 2022; 8:eabm7364. [PMID: 35179967 PMCID: PMC8856611 DOI: 10.1126/sciadv.abm7364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Nanocrystal gels can be responsive, tunable materials, but designing their structure and properties is challenging. By using reversibly bonded molecular linkers, gelation can be realized under conditions predicted by thermodynamics. However, simulations have offered the only microscopic insights, with no experimental means to monitor linking leading to gelation. We introduce a metal coordination linkage with a distinct optical signature allowing us to quantify linking in situ and establish structural and thermodynamic bases for assembly. Because of coupling between linked indium tin oxide nanocrystals, their infrared absorption shifts abruptly at a chemically tunable gelation temperature. We quantify bonding spectroscopically and use molecular simulation to understand temperature-dependent bonding motifs, revealing that gel formation is governed by reaching a critical number of effective links that extend the nanocrystal network. Microscopic insights from our colorimetric linking chemistry enable switchable gels based on thermodynamic principles, opening the door to rational design of programmable nanocrystal networks.
Collapse
Affiliation(s)
- Jiho Kang
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton St, Austin, TX 78712, USA
| | - Stephanie A. Valenzuela
- Department of Chemistry, University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Emily Y. Lin
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton St, Austin, TX 78712, USA
| | - Manuel N. Dominguez
- Department of Chemistry, University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Zachary M. Sherman
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton St, Austin, TX 78712, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton St, Austin, TX 78712, USA
- Department of Physics, University of Texas at Austin, 2515 Speedway, Austin, TX 78712, USA
| | - Eric V. Anslyn
- Department of Chemistry, University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Delia J. Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton St, Austin, TX 78712, USA
- Department of Chemistry, University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| |
Collapse
|
2
|
Re-usable colorimetric polymeric gel for visual and facile detection of multiple metal ions. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Ulrich S, Osypova A, Panzarasa G, Rossi RM, Bruns N, Boesel LF. Pyranine-Modified Amphiphilic Polymer Conetworks as Fluorescent Ratiometric pH Sensors. Macromol Rapid Commun 2019; 40:e1900360. [PMID: 31523877 DOI: 10.1002/marc.201900360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Indexed: 01/04/2023]
Abstract
The fluorescent dye 8-hydroxypyrene-1,3,6-trisulfonate (pyranine) combines high photostability with ratiometric pH detection in the physiological range, making it a prime candidate for optical sensors in biomedical applications, such as pH-based chronic wound monitoring. However, pyranine's high water solubility and the difficulty of covalent attachment pose severe limitations in terms of leaching from sensor matrices. Herein, pyranine-modified nanophase-separated amphiphilic polymer conetworks (APCNs) are reported as fluorescent ratiometric pH sensors. The thin, freestanding APCN membranes composed of one hydrophilic and one hydrophobic polymer provide an optically transparent, flexible, and stable ideal matrix that enables contact between dye and aqueous environment. An active ester-based conjugation approach results in a highly homogeneous and stable pyranine modification of the APCN's hydrophilic phase. This concept effectively solves the leaching challenge for pyranine without compromising its functionality, which is demonstrated by ratiometric pH detection in the range of pH 5-9.
Collapse
Affiliation(s)
- Sebastian Ulrich
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.,Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Alina Osypova
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Guido Panzarasa
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| |
Collapse
|
4
|
Ulrich S, Sadeghpour A, Rossi RM, Bruns N, Boesel LF. Wide Range of Functionalized Poly(N-alkyl acrylamide)-Based Amphiphilic Polymer Conetworks via Active Ester Precursors. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sebastian Ulrich
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | | | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | |
Collapse
|
5
|
Dzhardimalieva GI, Uflyand IE. Design Strategies of Metal Complexes Based on Chelating Polymer Ligands and Their Application in Nanomaterials Science. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0841-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|