1
|
Zhao H, Qi Y, Zhan P, Zhu Q, Liu X, Guan X, Zhang C, Su C, Qin P, Cai D. Artificial Photoenzymatic Reduction of Carbon Dioxide to Methanol by Using Electron Mediator and Co-factorAssembled ZnIn 2 S 4 Nanoflowers. CHEMSUSCHEM 2023:e202300061. [PMID: 36847586 DOI: 10.1002/cssc.202300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Increased absorption of visible light, low electron-hole recombination, and fast electron transfer are the major objectives for highly effective photocatalysts in biocatalytic artificial photosynthetic systems. In this study, a polydopamine (PDA) layer containing electron mediator, [M], and NAD+ cofactor was assembled on the outer surface of ZnIn2 S4 nanoflower, and the as-prepared nanoparticle, ZnIn2 S4 /PDA@poly/[M]/NAD+ , was used for photoenzymatic methanol production from CO2 . Because of effective capturing of visible light, reduced distance of electron transfer, and elimination of electron-holes recombination, a high NADH regeneration of 80.7±1.43 % could be obtained using the novel ZnIn2 S4 /PDA@poly/[M]/NAD+ . In the artificial photosynthesis system, a maximum methanol production of 116.7±11.8 μm was obtained. The enzymes and nanoparticles in the hybrid bio-photocatalysis system could be easily recovered using the ultrafiltration membrane at the bottom of the photoreactor. This is due to the successful immobilization of the small blocks including the electron mediator and cofactor on the surface of the photocatalyst. The ZnIn2 S4 /PDA@poly/[M]/NAD+ photocatalyst exhibited good stability and recyclability for methanol production. The novel concept presented in this study shows great promise for other sustainable chemical productions through artificial photoenzymatic catalysis.
Collapse
Affiliation(s)
- Hongqing Zhao
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanou Qi
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Peng Zhan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Zhu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiangshi Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyao Guan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chenxi Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyong Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Thao VD, Dung NT, Ha NT, Minh HN, Duong HC, Van Nguyen T, Son LT, Huy NN, Thu TV. Ag@AgCl nanoparticles grafted on carbon nanofiber: an efficient visible light plasmonic photocatalyst via bandgap reduction. NANOTECHNOLOGY 2022; 33:475603. [PMID: 35926317 DOI: 10.1088/1361-6528/ac86db] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
A novel silver@silver chloride/carbon nanofiber (Ag@AgCl/CNF) hybrid was synthesized by electrospinning, heat treament, and subsequentin situchemical oxidation strategy. The synthesized materials were characterized using x-ray diffraction, Fourier-transform infrared, UV-Vis diffuse reflectance spectroscopy, scanning electron microscopy, and energy dispersive x-ray. The experimental results reveal that the electrospun AgNO3/PAN was carbonized and reduced to Ag/CNF, the Ag/CNF was then partly oxidized to form Ag@AgCl/CNF in which Ag@AgCl nanoparticles (ca. 10-20 nm in diameter) were uniformly bounded to CNFs (ca. 165 nm in diameter). The obtained Ag@AgCl/CNF was employed for Na2S2O8activation under visible light irradiation to treat Rhodamine B (RhB). A remarkable RhB removal of ca. 94.68% was achieved under optimal conditions, and the influence of various parameters on removal efficiency was studied. Quenching experiments revealed that HO•, SO4•-,1O2, and O2•-were major reactive oxygen species, in which O2•-played a pivotal role in RhB degradation. A possible mechanistic route for RhB degradation was proposed.
Collapse
Affiliation(s)
- Vu Dinh Thao
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Nguyen Trung Dung
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Nguyen Thu Ha
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Ho Ngoc Minh
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi 100000, Vietnam
| | - Hung Cong Duong
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - To Van Nguyen
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Luong Trung Son
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Nguyen Nhat Huy
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tran Viet Thu
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| |
Collapse
|
3
|
Meng F, Qin Y, Lu J, Lin X, Meng M, Sun G, Yan Y. Biomimetic design and synthesis of visible-light-driven g-C 3N 4 nanotube @polydopamine/NiCo-layered double hydroxides composite photocatalysts for improved photocatalytic hydrogen evolution activity. J Colloid Interface Sci 2020; 584:464-473. [PMID: 33096412 DOI: 10.1016/j.jcis.2020.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
In the practical process of photocatalytic H2 evolution, optimizing the ability of light absorption and charge spatial separation is the top priority for improving the photocatalytic performance. In this study, we elaborately engineer neoteric g-C3N4 nanotube@polydopamine(pDA)/NiCo-LDH (LPC) composite photocatalyst by combining hydrothermal and calcination method. In the LPC composite system, the one-dimensional (1D) g-C3N4 nanotubes with larger specific surface area can afford more active sites and conduce to shorten the charge migration distance, as well as the high-speed mass transfer in the nanotube can accelerate the reaction course. The g-C3N4/NiCo-LDH type-II heterojunction can efficaciously stimulate the spatial separation of photo-produced charge. In addition, pDA as heterojunction metal-free interface mediums can provide multiple action (π-π* electron delocalization effect, adhesive action and photosensitization). The optimized LPC nanocomposite displays about 3.3-fold high photoactivity for H2 evolution compared with the g-C3N4 nanotube under solar light irradiation. In addition, the cycle experiment result shows that the LPC composite photocatalyst possesses superior stability and recyclability. The resultant g-C3N4@pDA/NiCo-LDH composite photocatalyst displays the potential practical application in the field of energy conversion.
Collapse
Affiliation(s)
- Fanying Meng
- College of Science, Beihua University, Jilin 132013, PR China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yingying Qin
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, PR China
| | - Jian Lu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Lin
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, PR China
| | - Minjia Meng
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gang Sun
- College of Science, Beihua University, Jilin 132013, PR China.
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Wang Q, Cui J, Xie A, Lang J, Li C, Yan Y. PVDF composite membrane with robust UV-induced self-cleaning performance for durable oil/water emulsions separation. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Sheng W, Li W, Tan D, Zhang P, Zhang E, Sheremet E, Schmidt BV, Feng X, Rodriguez RD, Jordan R, Amin I. Polymer Brushes on Graphitic Carbon Nitride for Patterning and as a SERS Active Sensing Layer via Incorporated Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9797-9805. [PMID: 31999093 PMCID: PMC7050013 DOI: 10.1021/acsami.9b21984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 05/27/2023]
Abstract
Graphitic carbon nitride (gCN) has a broad range of promising applications, from energy harvesting and storage to sensing. However, most of the applications are still restricted due to gCN poor dispersibility and limited functional groups. Herein, a direct photografting of gCN using various polymer brushes with tailorable functionalities via UV photopolymerization at ambient conditions is demonstrated. The systematic study of polymer brush-functionalized gCN reveals that the polymerization did not alter the inherent structure of gCN. Compared to the pristine gCN, the gCN-polymer composites show good dispersibility in various solvents such as water, ethanol, and tetrahydrofuran (THF). Patterned polymer brushes on gCN can be realized by employing photomask and microcontact printing technology. The polymer brushes with incorporated silver nanoparticles (AgNPs) on gCN can act as a multifunctional recyclable active sensing layer for surface-enhanced Raman spectroscopy (SERS) detection and photocatalysis. This multifunctionality is shown in consecutive cycles of SERS and photocatalytic degradation processes that can be applied to in situ monitor pollutants, such as dyes or pharmaceutical waste, with high chemical sensitivity as well as to water remediation. This dual functionality provides a significant advantage to our AgNPs/polymer-gCN with regard to state-of-the-art systems reported so far that only allow SERS pollutant detection but not their decomposition. These results may provide a new methodology for the covalent functionalization of gCN and may enable new applications in the field of catalysis, biosensors, and, most interestingly, environmental remediation.
Collapse
Affiliation(s)
- Wenbo Sheng
- Chair of Macromolecular
Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Wei Li
- Chair of Macromolecular
Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Deming Tan
- Department of Inorganic
Chemistry, Technische Universität
Dresden, 01069 Dresden, Germany
| | - Panpan Zhang
- Chair of Molecular
Functional Materials, Faculty of Chemistry and Food Chemistry, School
of Science, Technische Universität
Dresden, Mommsenstr.
4, 01069 Dresden, Germany
| | - En Zhang
- Department of Inorganic
Chemistry, Technische Universität
Dresden, 01069 Dresden, Germany
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | | | - Xinliang Feng
- Chair of Molecular
Functional Materials, Faculty of Chemistry and Food Chemistry, School
of Science, Technische Universität
Dresden, Mommsenstr.
4, 01069 Dresden, Germany
| | - Raul D. Rodriguez
- Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Rainer Jordan
- Chair of Macromolecular
Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Ihsan Amin
- Chair of Macromolecular
Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
- Van’t Hoff Institute of Molecular Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| |
Collapse
|
7
|
Mahmoodi NM, Taghizadeh A, Taghizadeh M, Abdi J. In situ deposition of Ag/AgCl on the surface of magnetic metal-organic framework nanocomposite and its application for the visible-light photocatalytic degradation of Rhodamine dye. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120741. [PMID: 31200227 DOI: 10.1016/j.jhazmat.2019.06.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 05/14/2023]
Abstract
Herein, NH2-MIL-125(Ti) (NMT) as one of the known stable metal-organic frameworks (MOFs) in aqueous solution was successfully magnetized with CoFe2O4 nanoparticles through the hydrothermal method. The Ag/AgCl as a plasmonic photocatalyst was assembled on the CoFe2O4/NMT (CFNMT) at room temperature by in situ deposition, and photo-reduction methods to improve the photocatalytic activity of CFNMT under LED visible light. The prepared materials were fully characterized by SEM/EDX, TEM, FTIR, XRD, UV-DRS, and VSM analysis. Rhodamin B (RhB) was selected as the pollutant model. The results showed that the Ag/AgCl@CFNMT had super-fast degradation ability of RhB molecule due to the synergetic effect between Ag/AgCl and CFNMT in comparison with NMT and CFNMT. The introduced Ag/AgCl on the surface of CFNMT increased absorption of photons in the visible region and enhanced the transfer and separation of the produced charge on the contact area between Ag/AgCl and CFNMT. Also, after seven times recycling, besides the simple magnetic separation of Ag/AgCl@CFNMT from liquid media, the composite still showed high photodegradation ability (89%).
Collapse
Affiliation(s)
- Niyaz Mohammad Mahmoodi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran.
| | - Ali Taghizadeh
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| | - Mohsen Taghizadeh
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| | - Jafar Abdi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
8
|
Wang L, Meng Y, Zhang C, Xiao H, Li Y, Tan Y, Xie Q. Improving Photovoltaic and Enzymatic Sensing Performance by Coupling a Core-Shell Au Nanorod@TiO 2 Heterostructure with the Bioinspired l-DOPA Polymer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9394-9404. [PMID: 30758182 DOI: 10.1021/acsami.8b19284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The photoelectrochemistry (PEC) performance of TiO2 is somewhat limited by its wide band gap and low quantum efficiency, and the innovation of its composite materials provides a promising solution for an improved performance. Herein, a composite of a Au nanorod@TiO2 core-shell nanostructure (AuNR@TiO2) and a melanin-like l-DOPA polymer (PD) is designed and prepared, where the outer layer PD tethered by TiO2-hydroxyl complexation and the AuNR core can intensify the long-wavelength light harvesting, and the AuNR@TiO2 core-shell structure can strengthen the hot-electron transfer to TiO2. The photocurrent of PD/AuNR@TiO2 is 8.4-fold improved versus that of commercial TiO2, and the maximum incident photon-to-electron conversion efficiency reaches 65% in the UV-visible-near-infrared region. In addition, the novel PD/AuNR@TiO2 photocatalyst possesses the advantages of good biocompatibility and stability, which can act as a versatile PEC biosensing platform for providing a biocompatible environment and improving detection sensitivity. Herein, a PEC enzymatic biosensor of glucose is developed on the basis of the immobilization of dual enzyme [glucose oxidase (GOx) and horseradish peroxidase (HRP)] in PD and the signaling strategy of biocatalytic precipitation. In phosphate buffer containing glucose and 4-chloro-1-naphthol, the HRP-catalyzed oxidation of 4-chloro-1-naphthol by GOx-generated H2O2 can form a precipitate on the electrode, by which the decrement of photocurrent intensity is proportional to the common logarithm of glucose concentration. The linear detection range is from 0.05 μM to 10.0 mM glucose, with a limit of detection of 0.01 μM (S/N = 3). Glucose in some human serum samples is analyzed with satisfactory results.
Collapse
Affiliation(s)
- Linping Wang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Yue Meng
- Institute of Nano-Bio Diagnosis and Therapy, College of Chemistry and Materials Engineering , Hunan University of Arts and Science , Changde 415000 , China
| | - Chunxiu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Hongbo Xiao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Yunlong Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Yueming Tan
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Qingji Xie
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| |
Collapse
|
9
|
Facile synthesis of plasmonic Ag/AgCl/polydopamine-TiO 2 fibers for efficient visible photocatalysis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.nanoso.2017.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Wang C, Wu Y, Lu J, Zhao J, Cui J, Wu X, Yan Y, Huo P. Bioinspired Synthesis of Photocatalytic Nanocomposite Membranes Based on Synergy of Au-TiO 2 and Polydopamine for Degradation of Tetracycline under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23687-23697. [PMID: 28656749 DOI: 10.1021/acsami.7b04902] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A bioinspired photocatalytic nanocomposite membrane was successfully prepared via polydopamine (pDA)-coated poly(vinylidene fluoride) (PVDF) membrane, as a secondary platform for vacuum-filtrated Au-TiO2 nanocomposites, with enhanced photocatalytic activity. The degradation efficiency of Au-TiO2/pDA/PVDF membranes reached 92% when exposed to visible light for 120 min, and the degradation efficiency of Au-TiO2/pDA/PVDF membranes increased by 26% compared to that of Au-TiO2 powder and increased by 51% compared to that of TiO2/pDA/PVDF nanocomposite membranes. The degradation efficiency remained about 90% after five cycle experiments, and the Au-TiO2/pDA/PVDF nanocomposite membranes showed good stability, regeneration performance, and easy recycling. The pDA coating not only served as a bioadhesion interface to improve the bonding force between the catalyst and the membrane substrate but also acted as a photosensitizer to broaden the wavelength response range of TiO2, and the structure of Au-TiO2/pDA/PVDF also improves the transfer rate of photogenerated electrons; the surface plasmon resonance effect of Au also played a positive role in improving the activity of the catalyst. Therefore, we believe that this study opens up a new strategy in preparing the bioinspired photocatalytic nanocomposite membrane for potential wastewater purification, catalysis, and as a membrane separation field.
Collapse
Affiliation(s)
- Chen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, P. R. China
| | - Yilin Wu
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, P. R. China
| | - Jian Lu
- School of Chemistry, Jilin Normal University , Siping 136000, P. R. China
| | - Juan Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, P. R. China
| | - Jiuyun Cui
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, P. R. China
| | - Xiuling Wu
- School of Pharmacy, Guangdong Pharmaceutical University , Guangzhou 510006, P. R. China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, P. R. China
| | - Pengwei Huo
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, P. R. China
| |
Collapse
|