1
|
Lin X, Liu M, Yi Q, Zhou Y, Su J, Qing B, Lu Y, Pu C, Lan W, Zou L, Wang J. Design, synthesis, and evaluation of a carboxylesterase detection probe with therapeutic effects. Talanta 2024; 274:126060. [PMID: 38604044 DOI: 10.1016/j.talanta.2024.126060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
In this study, a lysosomal targeting fluorescent probe recognition on CEs was designed and synthesized. The obtained probe BF2-cur-Mor demonstrated excellent selectivity, sensitivity, pH-independence, and enzyme affinity towards CEs within 5 min. BF2-cur-Mor could enable recognition of intracellular CEs and elucidate that the CEs content of different cancer cells follows the rule of HepG2 > HCT-116 > A549 > HeLa, and the CEs expression level of hepatoma cancer cells far exceeds that of normal hepatic cells, being in good agreement with the previous reports. The ability of BF2-cur-Mor to monitor CEs in vivo was confirmed by zebrafish experiment. BF2-cur-Mor exhibits some pharmacological activity in that it can induce apoptosis in hepatocellular carcinoma cells but is weaker in normal hepatocyte cells, being expected to be a potential "diagnostic and therapeutic integration" tool for the clinical diagnosis of CEs-related diseases.
Collapse
Affiliation(s)
- Xia Lin
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China; Guangxi Health Science College, Nanning, 530023, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Min Liu
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Qingyuan Yi
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Ying Zhou
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Jinchan Su
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Binyang Qing
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yaqi Lu
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Chunxiao Pu
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Lianjia Zou
- Guangxi Health Science College, Nanning, 530023, China.
| | - Jianyi Wang
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Lin X, Yi Q, Qing B, Lan W, Jiang F, Lai Z, Huang J, Liu Q, Jiang J, Wang M, Zou L, Huang X, Wang J. Two Fluorescent Probes for Recognition of Acetylcholinesterase: Design, Synthesis, and Comparative Evaluation. Molecules 2024; 29:1961. [PMID: 38731452 PMCID: PMC11085145 DOI: 10.3390/molecules29091961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, two "on-off" probes (BF2-cur-Ben and BF2-cur-But) recognizing acetylcholinesterase (AChE) were designed and synthesized. The obtained probes can achieve recognition of AChE with good selectivity and pH-independence with a linear range of 0.5~7 U/mL and 0.5~25 U/mL respectively. BF2-cur-Ben has a lower limit of detection (LOD) (0.031 U/mL), higher enzyme affinity (Km = 16 ± 1.6 μM), and higher inhibitor sensitivity. A responsive mechanism of the probes for AChE was proposed based on HPLC and mass spectra (MS) experiments, as well as calculations. In molecular simulation, BF2-cur-Ben forms more hydrogen bonds (seven, while BF2-cur-But has only four) and thus has a more stable enzyme affinity, which is mirrored by the results of the comparison of Km values. These two probes could enable recognition of intracellular AChE and probe BF2-cur-Ben has superior cell membrane penetration due to its higher log p value. These probes can monitor the overexpression of AChE during apoptosis of lung cancer cells. The ability of BF2-cur-Ben to monitor AChE in vivo was confirmed by a zebrafish experiment.
Collapse
Affiliation(s)
- Xia Lin
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning 530004, China; (X.L.); (Q.Y.); (W.L.)
- Faculty of Pharmacy, Guangxi Health Science College, Nanning 530023, China;
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qingyuan Yi
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning 530004, China; (X.L.); (Q.Y.); (W.L.)
| | - Binyang Qing
- College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.Q.); (M.W.)
| | - Weisen Lan
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning 530004, China; (X.L.); (Q.Y.); (W.L.)
| | - Fangcheng Jiang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China; (F.J.); (Z.L.)
| | - Zefeng Lai
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China; (F.J.); (Z.L.)
| | - Jijun Huang
- Guangxi Zhuang Autonomous Region Drug Administration, Nanning 530029, China; (J.H.); (Q.L.); (J.J.)
| | - Qing Liu
- Guangxi Zhuang Autonomous Region Drug Administration, Nanning 530029, China; (J.H.); (Q.L.); (J.J.)
| | - Jimin Jiang
- Guangxi Zhuang Autonomous Region Drug Administration, Nanning 530029, China; (J.H.); (Q.L.); (J.J.)
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.Q.); (M.W.)
| | - Lianjia Zou
- Faculty of Pharmacy, Guangxi Health Science College, Nanning 530023, China;
| | - Xinbi Huang
- Faculty of Pharmacy, Guangxi Health Science College, Nanning 530023, China;
| | - Jianyi Wang
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning 530004, China; (X.L.); (Q.Y.); (W.L.)
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Murali AC, Nayak P, Venkatasubbaiah K. Recent advances in the synthesis of luminescent tetra-coordinated boron compounds. Dalton Trans 2022; 51:5751-5771. [PMID: 35343524 DOI: 10.1039/d2dt00160h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tetra-coordinated boron compounds offer a plethora of luminescent materials. Different chelation around the boron center (O,O-, N,C-, N,O-, and N,N-) has been explored to tune the electronic and photophysical properties of tetra-coordinated boron compounds. A number of fascinating molecules with interesting properties such as aggregation induced emission, mechanochromism and tunable emission by changing the solvent polarity were realised. Owing to their rich and unique properties, some of the molecules have shown applications in making optoelectronic devices, probes and so on. This perspective provides an overview of the recent developments of tetra-coordinated boron compounds and their potential applications.
Collapse
Affiliation(s)
- Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| |
Collapse
|
4
|
Szłapa-Kula A, Palion-Gazda J, Ledwon P, Erfurt K, Machura B. A fundamental role of solvent polarity and remote substitution of 2-(4-R-phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline framework in controlling of ground- and excited-state properties of Re(I) chromophores [ReCl(CO) 3(R-C 6H 4-imphen)]. Dalton Trans 2022; 51:14466-14481. [DOI: 10.1039/d2dt02439j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Re(I) carbonyl chromophores with 1H-imidazo[4,5-f][1,10]phenanthroline (imphen) ligand functionalized with electron-donating amine groups attached to the imidazole ring via phenylene linkage was designed to investigate the impact of...
Collapse
|
5
|
Photophysical Properties and Electronic Structure of Symmetrical Curcumin Analogues and Their BF2 Complexes, Including a Phenothiazine Substituted Derivative. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Symmetrically substituted curcumin analogue compounds possess electron donor moieties at both ends of the conjugated systems; their difluoroboron complexes were synthesized, and their structures were fully characterized. A novel compound with enhanced photophysical properties bearing phenothiazine moieties is reported. The introduction of BF2 into the molecular structures resulted in bathochromic shifts both in the absorption and emission spectra, indicating that the π-conjugation was more extended than the one in the initial compounds. The solvatochromic effects were studied, which in case of the phenothiazinyl-curcumin BF2 complex was the most notable. Theoretical study of the investigated compounds was carried out using DFT and TD-DFT methods to evaluate the ground state geometries and vertical excitation energies.
Collapse
|
6
|
de Deus W, de França BM, Forero JS, Granato AEC, Ulrich H, Dória ACOC, Amaral MM, Slabon A, Rodrigues BVM. Curcuminoid-Tailored Interfacial Free Energy of Hydrophobic Fibers for Enhanced Biological Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24493-24504. [PMID: 34024099 PMCID: PMC8289194 DOI: 10.1021/acsami.1c05034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 05/25/2023]
Abstract
The ability of mimicking the extracellular matrix architecture has gained electrospun scaffolds a prominent space into the tissue engineering field. The high surface-to-volume aspect ratio of nanofibers increases their bioactivity while enhancing the bonding strength with the host tissue. Over the years, numerous polyesters, such as poly(lactic acid) (PLA), have been consolidated as excellent matrices for biomedical applications. However, this class of polymers usually has a high hydrophobic character, which limits cell attachment and proliferation, and therefore decreases biological interactions. In this way, functionalization of polyester-based materials is often performed in order to modify their interfacial free energy and achieve more hydrophilic surfaces. Herein, we report the preparation, characterization, and in vitro assessment of electrospun PLA fibers with low contents (0.1 wt %) of different curcuminoids featuring π-conjugated systems, and a central β-diketone unit, including curcumin itself. We evaluated the potential of these materials for photochemical and biomedical purposes. For this, we investigated their optical properties, water contact angle, and surface features while assessing their in vitro behavior using SH-SY5Y cells. Our results demonstrate the successful generation of homogeneous and defect-free fluorescent fibers, which are noncytotoxic, exhibit enhanced hydrophilicity, and as such greater cell adhesion and proliferation toward neuroblastoma cells. The unexpected tailoring of the scaffolds' interfacial free energy has been associated with the strong interactions between the PLA hydrophobic sites and the nonpolar groups from curcuminoids, which indicate its role for releasing hydrophilic sites from both parts. This investigation reveals a straightforward approach to produce photoluminescent 3D-scaffolds with enhanced biological properties by using a polymer that is essentially hydrophobic combined with the low contents of photoactive and multifunctional curcuminoids.
Collapse
Affiliation(s)
- Wevernilson
F. de Deus
- Instituto
Científico e Tecnológico, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, São Paulo, Brazil
| | - Bruna M. de França
- Instituto
de Química, Universidade Federal
do Rio de Janeiro, Centro de Tecnologia, Bloco A, Cidade Universitária, 21941-909, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josué Sebastian
B. Forero
- Instituto
de Química, Universidade Federal
do Rio de Janeiro, Centro de Tecnologia, Bloco A, Cidade Universitária, 21941-909, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro E. C. Granato
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, São Paulo, Brazil
| | - Anelise C. O. C. Dória
- Laboratório
de Biotecnologia e Plasmas Elétricos, IP&D, Universidade do Vale do Paraíba, Avenido Shishima Hifumi 2911, 12244-000, São José
dos Campos, São Paulo, Brazil
| | - Marcello M. Amaral
- Instituto
Científico e Tecnológico, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, São Paulo, Brazil
| | - Adam Slabon
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - Bruno V. M. Rodrigues
- Instituto
Científico e Tecnológico, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, São Paulo, Brazil
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| |
Collapse
|
7
|
Napierała S, Kubicki M, Patroniak V, Wałęsa-Chorab M. Electropolymerization of [2 × 2] grid-type cobalt(II) complex with thiophene substituted dihydrazone ligand. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Uranga‐Barandiaran O, Casanova D, Castet F. Flavylium Fluorophores as Near‐Infrared Emitters. Chemphyschem 2020; 21:2243-2248. [DOI: 10.1002/cphc.202000544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Olatz Uranga‐Barandiaran
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) 20018 Donostia Euskadi Spain
- Institut des Sciences Moléculaires (ISM UMR CNRS 5255) University of Bordeaux 33405 Talence France
| | - David Casanova
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
| | - Frédéric Castet
- Institut des Sciences Moléculaires (ISM UMR CNRS 5255) University of Bordeaux 33405 Talence France
| |
Collapse
|
9
|
Catherin M, Uranga-Barandiaran O, Brosseau A, Métivier R, Canard G, D'Aléo A, Casanova D, Castet F, Zaborova E, Fages F. Exciton Interactions, Excimer Formation, and [2π+2π] Photodimerization in Nonconjugated Curcuminoid-BF 2 Dimers. Chemistry 2020; 26:3818-3828. [PMID: 31943360 DOI: 10.1002/chem.201905122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 11/06/2022]
Abstract
We describe the synthesis of a series of covalently linked dimers of quadrupolar curcuminoid-BF2 dyes and the detailed investigation of their solvent-dependent spectroscopic and photophysical properties. In solvents of low polarity, intramolecular folding induces the formation of aggregated chromophores, the UV/Vis absorption spectra of which display the optical signature characteristic of weakly-coupled H-aggregates. The extent of folding and, in turn, of ground-state aggregation is strongly dependent on the nature of the flexible linker. Steady-state and time-resolved fluorescence emission spectroscopies show that the Frenkel exciton relaxes into a fluorescent symmetrical excimer state with a long lifetime. Furthermore, our in-depth studies show that a weakly emitting excimer lies on the pathway toward a photocyclomer. Two-dimensional 1 H NMR spectroscopy and density functional theory (DFT) allowed the structure of the photoproduct to be established. To our knowledge, this represents the first example of a [2π+2π] photodimerization of the curcuminoid chromophore.
Collapse
Affiliation(s)
- Manon Catherin
- CNRS, CINaM UMR 7325, Aix Marseille Univ, Campus de Luminy, Case 913, 13288, Marseille, France
| | - Olatz Uranga-Barandiaran
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018, Donostia, Euskadi, Spain.,Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Euskadi, Spain.,Institut des Sciences Moléculaires (ISM, UMR CNRS 5255), University of Bordeaux, 351 Cours de la Libération, 33405, Talence, France
| | - Arnaud Brosseau
- PPSM, ENS Paris Saclay, CNRS, Université Paris-Saclay, 94235, Cachan, France
| | - Rémi Métivier
- PPSM, ENS Paris Saclay, CNRS, Université Paris-Saclay, 94235, Cachan, France
| | - Gabriel Canard
- CNRS, CINaM UMR 7325, Aix Marseille Univ, Campus de Luminy, Case 913, 13288, Marseille, France
| | - Anthony D'Aléo
- CNRS, CINaM UMR 7325, Aix Marseille Univ, Campus de Luminy, Case 913, 13288, Marseille, France
| | - David Casanova
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018, Donostia, Euskadi, Spain
| | - Frédéric Castet
- Institut des Sciences Moléculaires (ISM, UMR CNRS 5255), University of Bordeaux, 351 Cours de la Libération, 33405, Talence, France
| | - Elena Zaborova
- CNRS, CINaM UMR 7325, Aix Marseille Univ, Campus de Luminy, Case 913, 13288, Marseille, France
| | - Frédéric Fages
- CNRS, CINaM UMR 7325, Aix Marseille Univ, Campus de Luminy, Case 913, 13288, Marseille, France
| |
Collapse
|
10
|
Polarization effect in luminescent mesogenic BF2 complexes derived from heterocyclic benzothiazoles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Lugovik KI, Eltyshev AK, Suntsova PO, Smoluk LT, Belousova AV, Ulitko MV, Minin AS, Slepukhin PA, Benassi E, Belskaya NP. Fluorescent boron complexes based on new N,O-chelates as promising candidates for flow cytometry. Org Biomol Chem 2019; 16:5150-5162. [PMID: 29963677 DOI: 10.1039/c8ob00868j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study presents the synthesis and optical properties of a new class of bright green-yellow fluorescent dyes with potential applications in bioimaging. A facile synthetic route via the chelation of aryl(hetaryl)aminoacryloylthiophene scaffolds with a BF2 fragment is presented. The photophysical properties of the dyes are attributed to the nature and position of electron-donating and electron-withdrawing substituents. Upon coordination to a BF2 fragment, characteristic emission was observed, with λem ranging from 503 to 543 nm and quantum yields of 0.14-0.42. Compared with parent aryl(hetaryl)aminoacryloylthiophenes, a significant red shift in absorption (up to 480 nm in solution) and emission (up to 543 nm in solution and 610 nm in the solid state) and high chemical stability and photostability were observed. The electron-accepting character of the substituents on the terminal aromatic ring or replacing this fragment with pyridine or pyrazine moieties resulted in increased quantum yields. To gain insight into the electronic structures and optical properties, quantum mechanical calculations were performed. The results of (TD-)DFT calculations supported the structural and spectroscopic data and showed the features of electronic distribution in the frontier molecular orbitals and active electrophilic and nucleophilic sites in the compounds investigated. Synthesized BF2 complexes are promising dyes for cell imaging and flow cytometry owing to their ready penetration and accumulation in cells.
Collapse
Affiliation(s)
- Kseniya I Lugovik
- Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Satalkar V, Rusmore TA, Phillips E, Pan X, Benassi E, Wu Q, Ran C, Shao Y. Computational modeling of curcumin-based fluorescent probe molecules. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2415-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Mao Y, Head-Gordon M, Shao Y. Unraveling substituent effects on frontier orbitals of conjugated molecules using an absolutely localized molecular orbital based analysis. Chem Sci 2018; 9:8598-8607. [PMID: 30568785 PMCID: PMC6253684 DOI: 10.1039/c8sc02990c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/16/2018] [Indexed: 11/21/2022] Open
Abstract
It is common to introduce electron-donating or electron-withdrawing substituent groups into functional conjugated molecules (such as dyes) to tune their electronic structure properties (such as frontier orbital energy levels) and photophysical properties (such as absorption and emission wavelengths). However, there lacks a generally applicable tool that can unravel the underlying interactions between orbitals from a substrate molecule and those from its substituents in modern electronic structure calculations, despite the long history of qualitative molecular orbital theory. In this work, the absolutely localized molecular orbitals (ALMO) based analysis is extended to analyze the effects of substituent groups on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of a given system. This provides a bottom-up avenue towards quantification of effects from distinct physical origins (e.g. permanent electrostatics/Pauli repulsion, mutual polarization, inter-fragment orbital mixing). For the example case of prodan (a typical dye molecule), it is found that inter-fragment orbital mixing plays a key role in narrowing the HOMO-LUMO gap of the naphthalene core. Specifically, an out-of-phase mixing of high-lying occupied orbitals on the naphthalene core and the dimethylamino group leads to an elevated HOMO, whereas an in-phase combination of LUMOs on the naphthalene core and the propionyl group lowers the LUMO energy of the entire molecule. We expect this ALMO-based analysis to bridge the gap between concepts from qualitative orbital interaction analysis and quantitative electronic structure calculations.
Collapse
Affiliation(s)
- Yuezhi Mao
- Kenneth S. Pitzer Center for Theoretical Chemistry , Department of Chemistry , University of California at Berkeley , Berkeley , CA 94720 , USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry , Department of Chemistry , University of California at Berkeley , Berkeley , CA 94720 , USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , USA . ; Tel: +1 405 325 0442
| |
Collapse
|
14
|
Uranga-Barandiaran O, Catherin M, Zaborova E, D'Aléo A, Fages F, Castet F, Casanova D. Optical properties of quadrupolar and bi-quadrupolar dyes: intra and inter chromophoric interactions. Phys Chem Chem Phys 2018; 20:24623-24632. [PMID: 30238104 DOI: 10.1039/c8cp05048a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work we present the synthesis, characterization and theoretical investigation of three boron-difluoride-curcuminoid derivatives and their covalent homodimers chemically linked through a polymethylenic chain. Low-lying electronic excited states and photophysical properties of the monomeric species have been described as the convolution of different donor-acceptor intramolecular excitations. Covalent dimers in solution can present open or folded structural conformations. Analysis of absorption profiles and computational results allow to identify the factors that control the relative stability of the two forms and rationalize its dependence with the solvent polarity. Interestingly, the strong electronic coupling in the folded forms results in low-lying excitations with sizable mixings of intra- and inter-chromophoric contributions, which cannot be described by means of the Kasha model of interacting chromophores. Our study demonstrates how decomposition of the computed excitations in terms of diabatic states can be extremely valuable in order to identify and quantify the nature of electronic transitions in the presence of several electron donor and acceptor fragments.
Collapse
|
15
|
Polishchuk V, Stanko M, Kulinich A, Shandura M. D-π-A-π-D Dyes with a 1,3,2-Dioxaborine Cycle in the Polymethine Chain: Efficient Long-Wavelength Fluorophores. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vladyslav Polishchuk
- Institute of Organic Chemistry; National Academy of Sciences of Ukraine; 5 Murmanska Str. 02094 Kyiv Ukraine
| | - Mariia Stanko
- Institute of Organic Chemistry; National Academy of Sciences of Ukraine; 5 Murmanska Str. 02094 Kyiv Ukraine
| | - Andrii Kulinich
- Institute of Organic Chemistry; National Academy of Sciences of Ukraine; 5 Murmanska Str. 02094 Kyiv Ukraine
| | - Mykola Shandura
- Institute of Organic Chemistry; National Academy of Sciences of Ukraine; 5 Murmanska Str. 02094 Kyiv Ukraine
| |
Collapse
|
16
|
Zhang P, Guo ZQ, Yan CX, Zhu WH. Near-Infrared mitochondria-targeted fluorescent probe for cysteine based on difluoroboron curcuminoid derivatives. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.08.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Gutsche CS, Hohlfeld BF, Flanagan KJ, Senge MO, Kulak N, Wiehe A. Sequential Nucleophilic Substitution of the α-Pyrrole and p
-Aryl Positions of meso
-Pentafluorophenyl-Substituted BODIPYs. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Claudia S. Gutsche
- Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstr. 34/36 14195 Berlin Germany
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
- biolitec research GmbH; Otto-Schott-Str. 15 07745 Jena Germany
| | - Benjamin F. Hohlfeld
- Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstr. 34/36 14195 Berlin Germany
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
- biolitec research GmbH; Otto-Schott-Str. 15 07745 Jena Germany
| | - Keith J. Flanagan
- School of Chemistry; SFI Tetrapyrrole Laboratory; The University of Dublin; 152-160 Pearse Street Dublin 2 Ireland
| | - Mathias O. Senge
- School of Chemistry; SFI Tetrapyrrole Laboratory; The University of Dublin; 152-160 Pearse Street Dublin 2 Ireland
| | - Nora Kulak
- Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstr. 34/36 14195 Berlin Germany
| | - Arno Wiehe
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
- biolitec research GmbH; Otto-Schott-Str. 15 07745 Jena Germany
| |
Collapse
|