1
|
Ichitsuka T, Makino T, Ishizaka T. Atom-Economical Synthesis of N-Arylamides Utilizing Isopropenyl Esters with Heterogeneous Acid Catalysts. ACS OMEGA 2023; 8:44861-44866. [PMID: 38046317 PMCID: PMC10688214 DOI: 10.1021/acsomega.3c06080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 12/05/2023]
Abstract
Existing methods for the catalytic synthesis of N-arylamides are limited by a narrow substrate scope, high catalyst costs, and complicated purification processes of products. To overcome these limitations, this study developed an ecofriendly method for the synthesis of N-arylamides using isopropenyl esters. Isopropenyl esters activated using heterogeneous acid catalysts reacted smoothly even with less reactive arylamines to afford N-arylamides in high yields. This method exhibits a wide substrate scope and is applicable for the synthesis of various N-arylamides (33 examples, 46-99% yield). The developed method enabled the obtainment of high-purity products with a facile workup procedure and showed excellent process mass intensity values due to the reduction of chemical waste.
Collapse
Affiliation(s)
- Tomohiro Ichitsuka
- Research Institute for Chemical
Process Technology, National Institute of
Advanced Industrial Science and Technology (AIST), Nigatake 4-2-1, Sendai, Miyagi 983-8551, Japan
| | - Takashi Makino
- Research Institute for Chemical
Process Technology, National Institute of
Advanced Industrial Science and Technology (AIST), Nigatake 4-2-1, Sendai, Miyagi 983-8551, Japan
| | - Takayuki Ishizaka
- Research Institute for Chemical
Process Technology, National Institute of
Advanced Industrial Science and Technology (AIST), Nigatake 4-2-1, Sendai, Miyagi 983-8551, Japan
| |
Collapse
|
2
|
Wang W, Yang Y, Luo H, Zhang J. Design of advanced separators for high performance Li-S batteries using natural minerals with 1D to 3D microstructures. J Colloid Interface Sci 2022; 614:593-602. [PMID: 35121518 DOI: 10.1016/j.jcis.2022.01.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 12/31/2022]
Abstract
Lithium-sulfur (Li-S) batteries are of great interest due to their high energy density. However, polysulfides shuttle and low S loading severely impede their practical applications. Here, we report design of advanced separators for Li-S batteries using natural minerals with 1D to 3D microstructures. Four natural minerals with different microstructures including 1D halloysite nanotubes, 1D attapulgite nanorods, 2D Li+-montmorillonite (Mmt) nanosheets and 3D porous diatomite were used together with carbon black (CB) for preparation of the mineral/CB-Celgard separators. The Si-OH groups of the minerals act as Lewis acid sites, which could effectively absorb polysulfides by forming LiO and OS bonds with polysulfides. Among all the separators, the Mmt/CB-Celgard separator endowed the Li-S battery with the highest upper plateau discharge capacity (369 mA h g-1), initial reversible capacity (1496 mA h g-1 at 0.1 C), rate performance and cycling stability (666 mA h g-1 after 500 cycles at 1.0 C with 0.046% capacity decay per cycle). The Mmt/CB-Celgard separator also enabled stable cycling of the Li-S battery with high S loading (8.3 mg cm-2) cathode. This work will provide inspiration for future development of advanced separators for high-energy-density Li-S batteries.
Collapse
Affiliation(s)
- Wankai Wang
- Center of Eco-Material and Green Chemistry and Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Yanfei Yang
- Center of Eco-Material and Green Chemistry and Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Heming Luo
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry and Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
3
|
Chellapandi T, Madhumitha G. Montmorillonite clay-based heterogenous catalyst for the synthesis of nitrogen heterocycle organic moieties: a review. Mol Divers 2021; 26:2311-2339. [PMID: 34705155 DOI: 10.1007/s11030-021-10322-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/18/2021] [Indexed: 11/26/2022]
Abstract
The use of montmorillonite clay as solid catalyst has grabbed much attention in the liquid phase reactions for organic synthesis. In recent years, there has been a lot of interest in organic synthesis using montmorillonite-based composites, especially in the synthesis of heterogeneous nanoparticles. Due to the robust and green nature of montmorillonite-based nanocatalysts, it has been widely used in N-heterocyclic reactions. In this review, we have concentrated on the reports pertaining the use of montmorillonite-based nanocatalyst in the synthesis of N-heterocycles, a category of organic compounds with excellent biological properties. This manuscript is arranged by the types of N-containing heterocycles synthesized using montmorillonite-based composite as catalysts including polycyclic spirooxindoles, heterocyclic propargylamine, indole-based heterocycles, quinoline and its derivatives, six-membered N-heterocyclic-based compounds and five-membered N-heterocyclic-based compounds. Special attention was given to the structural stability under experimental parameters of the montmorillonite-based composite with the incidence of metal leaching and reusability. Finally, along with recent developments, new findings in heterogeneous montmorillonite (Mt)-based catalysis have also been addressed.
Collapse
Affiliation(s)
- Thangapandi Chellapandi
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India
| | - Gunabalan Madhumitha
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
4
|
Reina A, Dang-Bao T, Guerrero-Ríos I, Gómez M. Palladium and Copper: Advantageous Nanocatalysts for Multi-Step Transformations. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1891. [PMID: 34443727 PMCID: PMC8401531 DOI: 10.3390/nano11081891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Metal nanoparticles have been deeply studied in the last few decades due to their attractive physical and chemical properties, finding a wide range of applications in several fields. Among them, well-defined nano-structures can combine the main advantages of heterogeneous and homogeneous catalysts. Especially, catalyzed multi-step processes for the production of added-value chemicals represent straightforward synthetic methodologies, including tandem and sequential reactions that avoid the purification of intermediate compounds. In particular, palladium- and copper-based nanocatalysts are often applied, becoming a current strategy in the sustainable synthesis of fine chemicals. The rational tailoring of nanosized materials involving both those immobilized on solid supports and liquid phases and their applications in organic synthesis are herein reviewed.
Collapse
Affiliation(s)
- Antonio Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Trung Dang-Bao
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam
- Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| | - Itzel Guerrero-Ríos
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Montserrat Gómez
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Toulouse 3—Paul Sabatier, UMR CNRS 5069, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| |
Collapse
|
5
|
Activated Mont K10-Carbon supported Fe2O3: A versatile catalyst for hydration of nitriles to amides and reduction of nitro compounds to amines in aqueous media. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01888-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Heiba HF, Taha AA, Mostafa AR, Mohamed LA, Fahmy MA. Preparation and characterization of novel mesoporous chitin blended MoO 3-montmorillonite nanocomposite for Cu(II) and Pb(II) immobilization. Int J Biol Macromol 2020; 152:554-566. [PMID: 32105686 DOI: 10.1016/j.ijbiomac.2020.02.254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/15/2020] [Accepted: 02/22/2020] [Indexed: 12/27/2022]
Abstract
A novel mesoporous chitin blended MoO3-Montmorillonite nanocomposite was prepared through three-steps synthesis. First, chitin was extracted from prawn shell then MoO3-MMT was prepared, and lastly, chitin was blended with MoO3-MMT. Chitin-MoO3-MMT was applied for the removal of Cu(II) and Pb(II) from wastewater. XRD characterization revealed MoO3 solubility in MMT interlayers, SEM showed a nanocomposite formation with sharp nanorods like-structure and length ranging from 60 to 77.7 nm. FTIR exhibited fundamental changes in the surface functional groups after adsorption. XPS analysis before and after adsorption showed the domination of chemical bonding with N and O. N2 adsorption-desorption isotherm displayed H3-type hysteresis loop and a pore size diameter of 10.67 nm confirming the mesoporous nature. Adsorption efficiency was studied as a function of pH, time, metal concentration and adsorbent mass. Adsorption capacity (Qe) values were 19.03 and 15.92 mg.g-1 for Cu(II) and Pb(II) respectively. The metal surface coverage mapping was 1.87 × 10^19 and 4.34 × 10^18 atoms/m2 for Cu(II) and Pb(II) respectively. Adsorption followed Langmuir isotherm and pseudo-second-order (PSO) kinetics suggesting a monolayer chemisorption domination. Intraparticle diffusion (IPD) model showed a boundary layer control. Thermodynamically, the adsorption was spontaneous and endothermic with activation energies 25.94 and 29.37 kJ.mol-1 for Cu(II) and Pb(II) respectively.
Collapse
Affiliation(s)
- Hany Fathy Heiba
- Marine Chemistry Department, Environmental Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt.
| | - Asia A Taha
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Alaa R Mostafa
- Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Laila A Mohamed
- Marine Chemistry Department, Environmental Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Mamdouh A Fahmy
- Marine Chemistry Department, Environmental Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
7
|
Najari S, Jafarzadeh M, Bahrami K. Copper(II) Oxide Nanoparticles Impregnated on Melamine‐Modified UiO‐66‐NH
2
Metal–Organic Framework for C–N Cross‐Coupling Reaction and Synthesis of 2‐Substituted Benzimidazoles. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Susan Najari
- Faculty of ChemistryRazi University Kermanshah 67149‐67346 Iran
| | | | - Kiumars Bahrami
- Faculty of ChemistryRazi University Kermanshah 67149‐67346 Iran
| |
Collapse
|
8
|
Mitrofanov AY, Murashkina AV, Martín-García I, Alonso F, Beletskaya IP. Formation of C–C, C–S and C–N bonds catalysed by supported copper nanoparticles. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01343d] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Copper nanoparticles on different supports are effective reusable catalysts for the palladium- and ligand-free coupling of aryl halides with alkynes, thiols and azoles.
Collapse
Affiliation(s)
| | | | - Iris Martín-García
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| | - Francisco Alonso
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| | | |
Collapse
|