1
|
Wang G, Zhang Q, Qin L, Tan K, Li C, Li L, Yang T, Liu X. Construction of MIL-100(Fe)-DMA material for efficient adsorption of Sr and Cs ions from radioactive wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176296. [PMID: 39284449 DOI: 10.1016/j.scitotenv.2024.176296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
A novel metal-organic framework (MOF) material, MIL-100(Fe)-DMA, was synthesized using the solvothermal method. The structure of the MOF was characterized using scanning electron microscopy-energy dispersive X-ray spectroscopy, N2 adsorption-desorption isotherms, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy. Batch adsorption experiments were performed to investigate the effects of initial Sr2+ and Cs+ concentrations, adsorption time, pH, and coexisting cations on the adsorption performance of the material. The adsorption mechanism was further elucidated using adsorption kinetics and isotherm models. The results indicated that the adsorption of Sr2+ and Cs+ does not significantly affect the MOF material structure. As reaction time and initial ion concentration increased, the adsorption capacity of MIL-100(Fe)-DMA for Sr2+ and Cs+ increased rapidly and then gradually reached equilibrium. Optimal adsorption occurred under alkaline conditions, with maximum adsorption capacity observed at pH = 8. The adsorption process for Sr2+ and Cs+ was well described by the pseudo-second-order kinetic model, the Weber-Morris model, and the Langmuir adsorption isothermal model. The adsorption process was mainly identified as monolayer chemical adsorption, influenced by multiple factors. Characterization combined with density functional theory calculations revealed that the unsaturated carboxylic acid groups on the surface of the MOFs play a crucial role in the interaction with Sr2+ and Cs+.
Collapse
Affiliation(s)
- Guohui Wang
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China; Chengdu Nuclear Engineering Design &Research Institute Co., Ltd, 404., CNNC, Chengdu 610000, China
| | - Qixin Zhang
- CPC Affairs and Administration Office, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Lailai Qin
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China; Chengdu Nuclear Engineering Design &Research Institute Co., Ltd, 404., CNNC, Chengdu 610000, China
| | - Kaixuan Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Chunguang Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Lianshun Li
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China; Chengdu Nuclear Engineering Design &Research Institute Co., Ltd, 404., CNNC, Chengdu 610000, China
| | - Tinggui Yang
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China.
| | - Xiaojuan Liu
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China; Chengdu Nuclear Engineering Design &Research Institute Co., Ltd, 404., CNNC, Chengdu 610000, China
| |
Collapse
|
2
|
Rabeie B, Mahmoodi NM. Green and environmentally friendly architecture of starch-based ternary magnetic biocomposite (Starch/MIL100/CoFe 2O 4): Synthesis and photocatalytic degradation of tetracycline and dye. Int J Biol Macromol 2024; 274:133318. [PMID: 38917917 DOI: 10.1016/j.ijbiomac.2024.133318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The presence of tetracycline and dye as organic contaminants has led to the poisoning of wastewater. The aim of this study is to synthesize a novel biocomposite material by decorating natural starch polymer granules with metal-organic framework (MIL100) and cobalt ferrite magnetic (CoFe2O4) nanoparticles. The synthesized ternary magnetic biocomposite (Starch/MIL100/CoFe2O4) was used for the photocatalytic degradation of methylene blue (MB) and tetracycline (TCN) using LED visible light. The synthesis of the biocomposite was confirmed through comprehensive analyses (XRD, SEM, FTIR, BET, EDX, MAP, DRS, pHzpc, TGA, and Raman). The evaluation examined the influence of initial pollutant concentration, catalyst dosage, pH, and the impact of anions on pollutant removal. The results show that the pollutant degradation ability of biocomposite has been significantly improved, so that the base biopolymer, starch, achieved 18% tetracycline degradation, but when decorated with MIL100 and cobalt ferrite, it increased to 91.2%. It was observed that the degradation for methylene blue improved from 12% for starch to 96.6% for the magnetic biocomposite. The tetracycline degradation decreased by more than 20% in the presence of NaCl, NaNO3, and Na2SO4. The finding shows that the biocomposite adheres to first-order kinetics for both pollutants. The scavengers test identified hydroxyl radicals as the most effective active species in the degradation process. High stability, even after passing 5 cycles of recycling was observed for the biocomposite. The results indicated that the facile and green synthesized Starch/MIL100/CoFe2O4 magnetic biocomposite could be used as an effective photocatalyst for the degradation of Tetracycline and dye at room temperature.
Collapse
Affiliation(s)
- Bahareh Rabeie
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran.
| | - Niyaz Mohammad Mahmoodi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran.
| |
Collapse
|
3
|
Ma X, Xu S, Pan Y, Jiang C, Wang Z. Construction of SERS output-signal aptasensor using MOF/noble metal nanoparticles based nanozyme for sensitive histamine detection. Food Chem 2024; 440:138227. [PMID: 38142555 DOI: 10.1016/j.foodchem.2023.138227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Herein, a signal output SERS aptasensor for Histamine (HA) detection is designed. MIL-100(Fe) was loaded with gold nanoparticles (AuNPs) to form composite nanozyme MIL-100(Fe)@AuNPs, which was used in the reaction system TMB/H2O2. Silver nanoparticles (AgNPs) were synthesized as "amplifier" for the SERS signal of ox TMB. After nucleic acid functionalization, the two parts were assembled to form the multifunctional substrate with both high catalytic and SERS efficiency. In the detection system, the specific binding effect of HA aptamer toward HA induced a decrease in the assembly of AgNPs on MIL-100(Fe)@AuNPs which caused a decrease in ox TMB SERS signals. The linear relation of HA ranged from 10-11 M to 5 × 10-3 M with LOD as low as 3.9 × 10-12 M. Recovery ratio in fermented soybean products (94.42-105.75 %) proved the real sample applicability. The fabricated SERS aptasensor will provide technical support for the safety during food processing and storage.
Collapse
Affiliation(s)
- Xiaoyuan Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Shan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yue Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Caiyun Jiang
- Department of Health, Jiangsu Engineering and Research Center of Food Safety, Jiangsu Vocational Institute of Commerce, Nanjing 211168, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Sobhani D, Djahaniani H, Duong A, Kazemian H. Efficient removal of microcystin-LR from contaminated water using water-stable MIL-100(Fe) synthesized under HF-free conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24512-24524. [PMID: 38443530 DOI: 10.1007/s11356-024-32675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Cyanobacterial algal hepatotoxins, called microcystins (MCs), are a global health concern, necessitating research on effective removal methods from contaminated water bodies. In this study, we synthesized non-fluorine MIL-100(Fe) using an environmentally friendly room-temperature method and utilized it as an adsorbent to effectively remove microcystin-LR (MC-LR), which is the most toxic MC congener. MIL-100(Fe) was thoroughly characterized, and its adsorption process was investigated under various conditions. Results revealed rapid MC-LR adsorption, achieving 93% removal in just 5 min, with the pseudo-second-order kinetic model indicating chemisorption as the primary mechanism. The Langmuir isotherm model demonstrated a monolayer sorption capacity of 232.6 µg g-1 at room temperature, showing favorable adsorption. Furthermore, the adsorption capacity increased from 183 µg g-1 at 20 °C to 311 µg g-1 at 40 °C, indicating an endothermic process. Thermodynamic parameters supported MC-LR adsorption's spontaneous and feasible nature onto MIL-100(Fe). This study highlights MIL-100(Fe) as a promising method for effectively removing harmful biological pollutants, such as MC-LR, from contaminated water bodies in an environmentally friendly manner.
Collapse
Affiliation(s)
- Dorna Sobhani
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC, Canada
- Northern Analytical Lab Services (Northern BC's Environment & Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada
| | - Hooreih Djahaniani
- Northern Analytical Lab Services (Northern BC's Environment & Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada
- Materials Technology & Environmental Research (MATTER) Lab, University of Northern British Columbia, Prince George, BC, Canada
| | - Ann Duong
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Northern Analytical Lab Services (Northern BC's Environment & Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada.
- Materials Technology & Environmental Research (MATTER) Lab, University of Northern British Columbia, Prince George, BC, Canada.
- Environmental Sciences Program, Faculty of Environment, University of Northern British Columbia, Prince George, British Columbia, V2N4Z9, Canada.
| |
Collapse
|
5
|
Christodoulou I, Patriarche G, Serre C, Boissiére C, Gref R. Advanced Characterization Methodology to Unravel the Biodegradability of Metal-Organic Framework Nanoparticles in Extremely Diluted Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14296-14307. [PMID: 38452344 DOI: 10.1021/acsami.3c18958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Porous iron(III) carboxylate metal-organic frameworks (MIL-100; MIL stands for Material of Institute Lavoisier) of submicronic size (nanoMOFs) have attracted a growing interest in the field of drug delivery due to their high drug payloads, excellent entrapment efficiencies, biodegradable character, and poor toxicity. However, only a few studies have dealt with the nanoMOF degradation mechanism, which is key to their biological applications. Complementary methods have been used here to investigate the degradation mechanism of Fe-based nanoMOFs under neutral or acidic conditions and in the presence of albumin. High-resolution STEM-HAADF coupled with energy-dispersive X-ray spectroscopy enabled the monitoring of the crystalline organization and elemental distribution during degradation. NanoMOFs were also deposited onto silicon substrates by dip-coating, forming stable thin films of high optical quality. The mean film thickness and structural changes were further monitored by IR ellipsometry, approaching the "sink conditions" occurring in vivo. This approach is essential for the successful design of biocompatible nano-vectors under extreme diluted conditions. It was revealed that while the presence of a protein coating layer did not impede the degradation process, the pH of the medium in contact with the nanoMOFs played a major role. The degradation of nanoMOFs occurred to a larger extent under neutral conditions, rapidly and homogeneously within the crystalline matrices, and was associated with the departure of their constitutive organic ligand. Remarkably, the nanoMOFs' particles maintained their global morphology during degradation.
Collapse
Affiliation(s)
- Ioanna Christodoulou
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS UMR 8214, 91405 Orsay, France
| | - Gilles Patriarche
- Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay, CNRS UMR 9001, 91120 Palaiseau, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| | - Cédric Boissiére
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, 75005 Paris, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS UMR 8214, 91405 Orsay, France
| |
Collapse
|
6
|
Kazemi Z, Jafari AJ, Kermani M, Kalantary RR. Evaluating the photocatalytic performance of MOF coated on glass for degradation of gaseous styrene under visible light. Sci Rep 2024; 14:1083. [PMID: 38212370 PMCID: PMC10784502 DOI: 10.1038/s41598-023-51098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
Styrene is a volatile organic compound with various applications, especially in the plastics and paint industries. Exposure to it leads to symptoms such as weakness, suppression of the central nervous system, and nausea, and prolonged exposure to it increases the risk of cancer. Its removal from the air is a topic that researchers have considered. Various methods such as absorption, membrane separation, thermal and catalytic oxidation, biofiltration have been used to remove these compounds. The disadvantages of these compounds include the need for high energy, production of secondary pollutants, large space, providing environmental conditions (temperature and humidity) and long time. The photocatalyst process is considered as an advanced process due to the production of low and safe secondary pollutants. MOFs are nanoparticles with unique photocatalytic properties that convert organic pollutants into water and carbon dioxide under light irradiation and in environmental conditions, which prevent the production of secondary pollutants. The present study aimed to investigate the efficiency of MIL100 (Fe) nanoparticles coated on glass in removing styrene vapor from the air. Surface morphology, crystal structure, pore size, functional groups, and chemical composition of the catalyst were analyzed by SEM, XRD, BET, FTIR, and EDX analysis. The effect of parameters such as initial pollutant concentration, temperature, time, relative humidity, and nanoparticle concentration was evaluated as effective parameters in the removal process. Based on the results, MIL100 (Fe) 0.6 g/l with an 89% removal rate had the best performance for styrene removal. Due to its optimal removal efficiency, it can be used to degrade other air pollutants.
Collapse
Affiliation(s)
- Zohre Kazemi
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Kermani
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Rezaei Kalantary
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Salazar-García A, Montemayor SM, Guzmán-Mar JL, Puente-Urbina BA, Hurtado-López GF, Hinojosa-Reyes L. Efficient removal of veterinary drugs from aqueous solutions using magnetically separable carbonaceous materials derived from cobalt and iron metal-organic frameworks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27939-6. [PMID: 37278894 DOI: 10.1007/s11356-023-27939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Rapid synthesis of carbon-based magnetic materials derived from cobalt and iron metal-organic frameworks (MOFs), ZIF-67, and MIL-100(Fe), by microwave-assisted method, followed by carbonization under a N2 atmosphere is described in this study. The carbon-derived MOFs (CDMs) were evaluated for the removal of the emerging pollutants sulfadiazine (SDZ) and flumequine (FLU) used as veterinary drugs. The study aimed to link the adsorption behavior with their surface properties and elemental composition. C-ZIF-67 and C-MIL-100(Fe) showed hierarchical porous structures with specific surface areas of 295.6 and 163.4 m2 g-1, respectively. The Raman spectra of the CDMs show the characteristic D and G bands associated with defect-rich carbon and sp2 graphitic carbon, respectively. The CDMs exhibit cobalt species (Co3O4, CoO, and Co) in C-ZIF-67 and iron species (Fe2O3, Fe3O4, and Fe) in C-MIL-100 (Fe) which are related to the magnetic behavior of CDMs. C-ZIF-67 and C-MIL-100 (Fe) had saturation magnetization values of 22.9 and 53.7 emu g-1, respectively, allowing easy solid-liquid separation using a magnet. SDZ and FLU removal rates on CDMs follow pseudo-second-order kinetics, and adsorption isotherms fit the Langmuir model based on regression coefficient values. Adsorption thermodynamics calculations showed that the adsorption of SDZ and FLU by CDMs was a thermodynamically favorable process. Therefore, these properties of C-ZIF-67 and C-MIL-100 (Fe) and their regeneration ability facilitate their use as adsorbents for emerging pollutants.
Collapse
Affiliation(s)
- Andrea Salazar-García
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), Ave. Universidad s/n, Cd Universitaria, 66455, San Nicolás de los Garza, N.L., C.P, Mexico
| | - Sagrario M Montemayor
- Departamento de Materiales Avanzados, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, San José de los Cerritos, 25294, Saltillo, Coahuila, C.P, Mexico
| | - Jorge Luis Guzmán-Mar
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), Ave. Universidad s/n, Cd Universitaria, 66455, San Nicolás de los Garza, N.L., C.P, Mexico
| | - Bertha A Puente-Urbina
- Departamento de Materiales Avanzados, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, San José de los Cerritos, 25294, Saltillo, Coahuila, C.P, Mexico
| | - Gilberto F Hurtado-López
- Departamento de Materiales Avanzados, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, San José de los Cerritos, 25294, Saltillo, Coahuila, C.P, Mexico
| | - Laura Hinojosa-Reyes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), Ave. Universidad s/n, Cd Universitaria, 66455, San Nicolás de los Garza, N.L., C.P, Mexico.
| |
Collapse
|
8
|
Zhang J, Li Z, Zhang Q, Zhang L, Ma T, Ma X, Liang K, Ying Y, Fu Y. Nanoconfined MXene-MOF Nanolaminate Film for Molecular Removal/Collection and Multiple Sieving. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17222-17232. [PMID: 36877589 DOI: 10.1021/acsami.3c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Balancing the trade-off between permeability and selectivity while realizing multiple sieving from complex matrices remains as bottlenecks for membrane-based separation. Here, a unique nanolaminate film of transition metal carbide (MXene) nanosheets intercalated by metal-organic framework (MOF) nanoparticles was developed. The intercalation of MOFs modulated the interlayer spacing and created nanochannels between MXene nanosheets, promoting a fast water permeance of 231 L m-2 h-1 bar-1. The nanochannel endowed a 10-fold lengthened diffusion path and the nanoconfinement effect to enhance the collision probability, establishing an adsorption model with a separation performance above 99% to chemicals and nanoparticles. In addition to the remained rejection function of nanosheets, the film integrated dual separation mechanisms of both size exclusion and selective adsorption, enabling a rapid and selective liquid phase separation paradigm that performs simultaneous multiple chemicals and nanoparticles sieving. The unique MXenes-MOF nanolaminate film and multiple sieving concepts are expected to pave a promising way toward highly efficient membranes and additional water treatment applications.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhishang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tongtong Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xinyue Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
9
|
Shi Y, Wang L, Miao X, Cao Z, Zhang Y, Cheng L, Yang J. In situ synthesis of donut-like Fe-doped-BiOCl@Fe-MOF composites using for excellent performance photodegradation of dyes and tetracycline. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Le BT, La DD, Nguyen PTH. Ultrasonic-Assisted Fabrication of MIL-100(Fe) Metal-Organic Frameworks as a Carrier for the Controlled Delivery of the Chloroquine Drug. ACS OMEGA 2023; 8:1262-1270. [PMID: 36643433 PMCID: PMC9835187 DOI: 10.1021/acsomega.2c06676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic framework materials (MOFs) are materials with an ordered crystalline structure and high porosity that have been intensively investigated for many applications, such as gas adsorption, catalysis, sensors, drug delivery, and so on. Among them, the MOF-based drug delivery system has received increasing interest from scientists worldwide. This work presented the preparation of the MIL-100(Fe) metal-organic framework from the organic ligand of trimesic acid and iron ions with ultrasonic assistance. Scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area (BET), X-ray diffraction (XRD), infrared spectroscopy (FTIR), and Raman spectroscopy were employed to characterize the prepared MIL-100(Fe) material. MIL-100(Fe) materials synthesized by the ultrasonic method have uniform particle morphology ranging from 100 to 300 nm with a surface area of 1033 m2/g. The prepared MIL-100(Fe) was employed as a carrier for delivering chloroquine drug with a maximal loading capacity of 220 mg/g. The MIL-100(Fe)@chloroquine system was also characterized in detail. The delivery system's slow drug release was studied, showing that nearly 80% of chloroquine molecules were released after 7.5 h of immersing time in PBS and simulated gastric solutions and completely detached from the MIL-100(Fe)@chloroquine system only after approximately 80 h. This result shows the ability to control chloroquine drug release of the material, reducing the possibility of drug shock.
Collapse
Affiliation(s)
- Bac Thanh Le
- Institute of Chemistry and
Materials, Nghia Do, Cau Giay, Hanoi 100000, Vietnam
| | - Duong Duc La
- Institute of Chemistry and
Materials, Nghia Do, Cau Giay, Hanoi 100000, Vietnam
| | | |
Collapse
|
11
|
Vinothkumar K, Chandra L, Mohan S, Balakrishna RG. Nature-Inspired Photoactive Metal–Organic Framework Nanofiber Filters for Oil–Water Separation: Conserving Successive Flux, Rejection, and Antifouling. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Lavanya Chandra
- Centre for Nano and Material Sciences, Jain University, Bangalore562112, Karnataka, India
| | - Sakar Mohan
- Centre for Nano and Material Sciences, Jain University, Bangalore562112, Karnataka, India
| | - R. Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain University, Bangalore562112, Karnataka, India
| |
Collapse
|
12
|
Hypercrosslinked polymer derived carbon@MIL-100 magnetic material for the enhanced extraction of diclofenac. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Bimetallic Co-Fe-BTC/CN nanocomposite synthesised via a microwave-assisted hydrothermal method for highly efficient Reactive Yellow 145 dye photodegradation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Kazemi Z, Jonidi Jafari A, Kermani M, Rezaei Kalantary R. Acetaldehyde vapors removal from the air using a glass substrate coated with MOF nanoparticles under visible light. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Amalia A, Lestari WW, Pratama JH, Wibowo FR, Larasati L, Saraswati TE. Modification of dry-gel synthesized MIL-100(Fe) with carboxymethyl cellulose for curcumin slow-release. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Liu YL, Zhao Y, Zhang J, Ye Y, Sun Q. Cu2-cluster-based MOF with open metal sites and Lewis basic sites: Construction, CO2 adsorption and fixation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Xu W, Xu J, Zhang Q, Yun Z, Zuo Q, Wang L. Study on visible light photocatalytic performance of MIL-100(Fe) modified by carbon nanodots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55069-55080. [PMID: 35312921 DOI: 10.1007/s11356-022-19707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The emerging porous material metal organic framework (MOFs) has caught researchers' attention in the field of photocatalysis. In this study, a visible light-driven carbon nanodots/MIL-100(Fe) photocatalytic material was prepared by in situ synthesis method. The study found that the composite material loaded with 2.5 mg C-dots (2.5-carbon nanodots/MIL-100(Fe)) showed the best tetracycline degradation efficiency with 4.2 times higher than that of MIL-100(Fe) materials in a neutral environment. The superiority of 2.5-carbon nanodots/MIL-100(Fe) in degrading tetracycline is attributed to the fact that C-dots have the ability to act as acceptors and donors of electrons, thus promoting electron transfer and inhibiting electron-hole recombination. Moreover, the 2.5-carbon nanodots/MIL-100(Fe) also showed high stability after five cycles of the photodegradation reaction. The quenching experiment proved that the main active substances that degrade tetracycline were O2- and h+. The study of carbon nanodots /MIL-100(Fe) composite materials provides new thoughts and methods for the removal of organic pollutants.
Collapse
Affiliation(s)
- Weiguo Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Jun Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Qiuya Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Zeping Yun
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Qiaosheng Zuo
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Liping Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
| |
Collapse
|
18
|
Barjasteh M, Vossoughi M, Bagherzadeh M, Pooshang Bagheri K. Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells. Int J Pharm 2022; 618:121647. [PMID: 35288221 DOI: 10.1016/j.ijpharm.2022.121647] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
In this study, the potential of using MIL-100(Fe) metal-organic framework (MOF) for loading and controlling the release of dacarbazine (DTIC) was evaluated for in vitro treatment of melanoma. The drug loading was performed during the green synthesis of MIL-100(Fe) in an aqueous media without using any harmful solvents, to obtain MIL-DTIC. The surface of this structure was then coated with polyethylene glycol (PEG) in the same aqueous solution to synthesize MIL-DTIC-PEG. The synthesized samples were characterized using various methods. Their release profile was studied in phosphate-buffered saline (PBS) and simulated cutaneous medium (SCM). The cytotoxicity of DTIC and its nano-MOF formulation were investigated against melanoma A375 cell lines. The results revealed that the PEG coating (PEGylation) changed the surface charge of MOF from -2.8 ± 0.9 mV to -42.8 ± 1.2 mV, which can contribute to the colloidal stability of MOF. The PEGylation showed a significant effect on controlled drug release, especially in SCM, which increases the complete release time from 60 h to 12 days. Moreover, both of the drug-containing MOFs showed more toxicity than DTIC and unloaded MOFs, confirming that the cumulative release of drug and better cellular uptake of NPs lead to increased toxicity.
Collapse
Affiliation(s)
- Mahdi Barjasteh
- Institute for Nano-science and Nanotechnology, Sharif University of Technology, Tehran, Iran.
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | | | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
19
|
In-syringe solid-phase extraction of polycyclic aromatic hydrocarbons using an iron–carboxylate metal–organic framework and hypercrosslinked polymer composite gelatin cryogel–modified cellulose acetate adsorbent. Mikrochim Acta 2022; 189:164. [DOI: 10.1007/s00604-022-05276-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
|
20
|
Resen AK, Atiroğlu A, Atiroğlu V, Guney Eskiler G, Aziz IH, Kaleli S, Özacar M. Effectiveness of 5-Fluorouracil and gemcitabine hydrochloride loaded iron‑based chitosan-coated MIL-100 composite as an advanced, biocompatible, pH-sensitive and smart drug delivery system on breast cancer therapy. Int J Biol Macromol 2022; 198:175-186. [PMID: 34973989 DOI: 10.1016/j.ijbiomac.2021.12.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022]
Abstract
This study was planned to evolve the bioavailability and therapeutic efficiency of Gemcitabine (GEM) and 5-Fluorouracil with decreased side effects using MIL-100 nano-composite as carrier. Impregnation approach was used for encapsulation of 5-Fluorouracil alone and with GEM inside the MIL-100. The formed 5-Fluorouracil@MIL-100 and 5-Fluorouracil-GEM@MIL-100 were then coated with chitosan, sequentially chelated with iron(III) and conjugated with quercetin, eventually obtaining a multifunctional MIL-100 nanocarrier. The hybrid nanocarrier nascency was verified by different characterization results. pH-sensitive releases of 5-Fluorouracil and GEM were observed because of the inherent pH-dependent stability of MIL-100. Additionally, we evaluated the anti-cancer activity of these nanocarriers through WST-1 analysis and acridine orange staining in MCF-7 human breast cancer and HUVEC control cell lines. Our findings showed that all nanocarriers exhibited anti-cancer activity and induced apoptosis in MCF-7 cells. However, 5-Fluorouracil@MIL-100 and chitosan-coated 5-Fluorouracil@MIL-100 with quercetin were more effective than other nanocarriers in MCF-7 cells (p < 0.05). Moreover, we observed cytotoxicity in HUVEC cells due to the adverse side effects of chemotherapy drugs. However, chitosan coated nanocarriers with quercetin were less toxic on HUVEC cells at particularly 1 µg/mL. Therefore, MIL-100 could be used for a promising chemotherapeutic drugs delivery and chitosan coated drugs with quercetin could be useful for reducing toxicity on normal cells.
Collapse
Affiliation(s)
- Ali K Resen
- University of Baghdad, Genetic Engineering and Biotechnology Institute, Baghdad, Iraq
| | - Atheer Atiroğlu
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOE N AMS R & D Group), 54187 Sakarya, Turkey; Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54187 Sakarya, Turkey.
| | - Vesen Atiroğlu
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOE N AMS R & D Group), 54187 Sakarya, Turkey; Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54187 Sakarya, Turkey.
| | - Gamze Guney Eskiler
- Sakarya University, Faculty of Medicine, Department of Medical Biology, 54290 Sakarya, Turkey
| | - Ismail H Aziz
- University of Baghdad, Genetic Engineering and Biotechnology Institute, Baghdad, Iraq
| | - Suleyman Kaleli
- Sakarya University, Faculty of Medicine, Department of Medical Biology, 54290 Sakarya, Turkey
| | - Mahmut Özacar
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOE N AMS R & D Group), 54187 Sakarya, Turkey; Sakarya University, Science & Arts Faculty, Department of Chemistry, 54187 Sakarya, Turkey
| |
Collapse
|
21
|
TEA driven C, N co-doped superfine Fe 3O 4 nanoparticles for efficient trifunctional electrode materials. J Colloid Interface Sci 2021; 609:249-259. [PMID: 34906910 DOI: 10.1016/j.jcis.2021.11.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022]
Abstract
Poor conductivity is an obstacle that restricts the development of the electrochemistry performance of Fe3O4. In this work, a novel carbon and nitrogen co-doped ultrafine Fe3O4 nanoparticles (CN-Fe3O4) have been synthesized by triethylamine (TEA) induction and subsequent calcination. The addition of TEA could not only regulate the size of Fe3O4 nanoparticles, but also promote the formation of amorphous carbon layer. Well-designed CN-Fe3O4 heterostructures provide a highly interconnected porous conductive network, large heterogeneous interface area, large specific surface area and a large number of active sites, which greatly improve conductivity and promote electron transfer and electrolyte diffusion. The prepared CN-Fe3O4 electrode exhibits a high specific capacitance of 399.3 mF cm-2 and good cycling stability. Meanwhile, CN-Fe3O4 catalyst exhibits excellent oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activities, with overpotentials of 136 and 281 mV at the current density of 10 mA cm-2, respectively. This work provides a promising approach for the design of high-performance anode materials for supercapacitors and provides profound implications for the development of catalysts with bifunctional catalytic activity.
Collapse
|
22
|
Sturini M, Puscalau C, Guerra G, Maraschi F, Bruni G, Monteforte F, Profumo A, Capsoni D. Combined Layer-by-Layer/Hydrothermal Synthesis of Fe 3O 4@MIL-100(Fe) for Ofloxacin Adsorption from Environmental Waters. NANOMATERIALS 2021; 11:nano11123275. [PMID: 34947624 PMCID: PMC8703555 DOI: 10.3390/nano11123275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
A simple not solvent and time consuming Fe3O4@MIL-100(Fe), synthesized in the presence of a small amount of magnetite (Fe3O4) nanoparticles (27.3 wt%), is here presented and discussed. Layer-by-layer alone (20 shell), and combined layer-by-layer (5 shell)/reflux or /hydrothermal synthetic procedures were compared. The last approach (Fe3O4@MIL-100_H sample) is suitable (i) to obtain rounded-shaped nanoparticles (200–400 nm diameter) of magnetite core and MIL-100(Fe) shell; (ii) to reduce the solvent and time consumption (the layer-by-layer procedure is applied only 5 times); (iii) to give the highest MIL-100(Fe) amount in the composite (72.7 vs. 18.5 wt% in the layer-by-layer alone); (iv) to obtain a high surface area of 3546 m2 g−1. The MIL-100(Fe) sample was also synthesized and both materials were tested for the absorption of Ofloxacin antibiotic (OFL). Langmuir model well describes OFL adsorption on Fe3O4@MIL-100_H, indicating an even higher adsorption capacity (218 ± 7 mg g−1) with respect to MIL-100 (123 ± 5 mg g−1). Chemisorption regulates the kinetic process on both the composite materials. Fe3O4@MIL-100_H performance was then verified for OFL removal at µg per liter in tap and river waters, and compared with MIL-100. Its relevant and higher adsorption efficiency and the magnetic behavior make it an excellent candidate for environmental depollution.
Collapse
Affiliation(s)
- Michela Sturini
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (M.S.); (G.G.); (F.M.); (A.P.)
| | - Constantin Puscalau
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy; (C.P.); (G.B.); (F.M.)
- The GlaxoSmithKline Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, UK
| | - Giulia Guerra
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (M.S.); (G.G.); (F.M.); (A.P.)
- Istituto di Tecnologie Biomediche, ITB-CNR, 20054 Segrate, Milano, Italy
| | - Federica Maraschi
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (M.S.); (G.G.); (F.M.); (A.P.)
| | - Giovanna Bruni
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy; (C.P.); (G.B.); (F.M.)
| | - Francesco Monteforte
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy; (C.P.); (G.B.); (F.M.)
| | - Antonella Profumo
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (M.S.); (G.G.); (F.M.); (A.P.)
| | - Doretta Capsoni
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy; (C.P.); (G.B.); (F.M.)
- Correspondence: ; Tel.: +39-0382-987213
| |
Collapse
|
23
|
Gnanasekaran G, Sudhakaran MSP, Kulmatova D, Han J, Arthanareeswaran G, Jwa E, Mok YS. Efficient removal of anionic, cationic textile dyes and salt mixture using a novel CS/MIL-100 (Fe) based nanofiltration membrane. CHEMOSPHERE 2021; 284:131244. [PMID: 34175516 DOI: 10.1016/j.chemosphere.2021.131244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The purification of hazardous textile dyeing wastewater has exhibited many challenges because it consists of a complex mixture, including dyestuff, additives, and salts. It is necessary to fabricate membranes with enhanced permeability, fouling resistance, stability, and superior dyes and salts removal from wastewater. Incorporating a highly water stable metal-organic framework (MOFs) into membranes would meet the requirements for the efficient purification of textile wastewater. In this study, nanofiltration (NF) membranes are fabricated by incorporating MIL-100 (Fe) into the chitosan (CS) through film casting technique. The effect of MIL-100 (Fe) loadings on chitosan characterized by FT-IR, XRD, contact angle measurement, FESEM-EDS, XPS, zeta potential, and surface roughness analysis. The membrane characterization confirmed the enhanced surface roughness, pore size, surface charge, and hydrophilicity. The CS/MIL-100 (Fe) membrane exhibited an improved pure water flux from 5 to 52 L/m2h as well as 99% rejection efficiency for cationic methylene blue (MB) and anionic methyl orange (MO). We obtained the rejection efficiency trend for the MB mixed salts in the order of MgSO4 (Mg2+ - 51.6%, SO42- - 52.5%) > Na2SO4 (Na+ - 26.3%, SO42- - 29.3%) > CaCl2 (Ca2+ - 21.4%, Cl- - 23.8%) > NaCl (Na+ - 16.8%, Cl- - 19.2%). In addition, the CS/MIL-100 (Fe) composite membrane showed excellent rejection efficiency and antifouling performances with high recycling stability. These stunning results evidenced that the CS/MIL-100 (Fe) nanofiltration membrane is a promising candidate for removing toxic pollutants in the textile dyeing wastewater.
Collapse
Affiliation(s)
- Gnanaselvan Gnanasekaran
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - M S P Sudhakaran
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Dilafruz Kulmatova
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jeongho Han
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Eunjin Jwa
- Jeju Global Research Center, Korea Institute of Energy Research, Jeju, 63359, Republic of Korea
| | - Young Sun Mok
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
24
|
Tocco D, Carucci C, Todde D, Shortall K, Otero F, Sanjust E, Magner E, Salis A. Enzyme immobilization on metal organic frameworks: Laccase from Aspergillus sp. is better adapted to ZIF-zni rather than Fe-BTC. Colloids Surf B Biointerfaces 2021; 208:112147. [PMID: 34634655 DOI: 10.1016/j.colsurfb.2021.112147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Laccase from Aspergillus sp. (LC) was immobilized within Fe-BTC and ZIF-zni metal organic frameworks through a one-pot synthesis carried out under mild conditions (room temperature and aqueous solution). The Fe-BTC, ZIF-zni MOFs, and the LC@Fe-BTC, LC@ZIF-zni immobilized LC samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The kinetic parameters (KM and Vmax) and the specific activity of the free and immobilized laccase were determined. Immobilized LCs resulted in a lower specific activity compared with that of the free LC (7.7 µmol min-1 mg-1). However, LC@ZIF-zni was almost 10 times more active than LC@Fe-BTC (1.32 µmol min-1 mg-1 vs 0.17 µmol min-1 mg-1) and only 5.8 times less active than free LC. The effect of enzyme loading showed that LC@Fe-BTC had an optimal loading of 45.2 mg g-1, at higher enzyme loadings the specific activity decreased. In contrast, the specific activity of LC@ZIF-zni increased linearly over the loading range investigated. The storage stability of LC@Fe-BTC was low with a significant decrease in activity after 5 days, while LC@ZIF retained up to 50% of its original activity after 30 days storage. The difference in activity and stability between LC@Fe-BTC and LC@ZIF-zni is likely due to release of Fe3+ and the low stability of Fe-BTC MOF. Together, these results indicate that ZIF-zni is a superior support for the immobilization of laccase.
Collapse
Affiliation(s)
- Davide Tocco
- Department of Chemical and Geological Sciences, University of Cagliari, and Centro NanoBiotecnologie Sardegna (CNBS), Cittadella Universitaria, SS 554 bivio Sestu, 09042, Monserrato (CA), Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy; Unità Operativa University of Cagliari, Italy; Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari, and Centro NanoBiotecnologie Sardegna (CNBS), Cittadella Universitaria, SS 554 bivio Sestu, 09042, Monserrato (CA), Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy; Unità Operativa University of Cagliari, Italy; Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| | - Debora Todde
- Department of Chemical and Geological Sciences, University of Cagliari, and Centro NanoBiotecnologie Sardegna (CNBS), Cittadella Universitaria, SS 554 bivio Sestu, 09042, Monserrato (CA), Italy
| | - Kim Shortall
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Fernando Otero
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Enrico Sanjust
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy; Unità Operativa University of Cagliari, Italy; Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, and Centro NanoBiotecnologie Sardegna (CNBS), Cittadella Universitaria, SS 554 bivio Sestu, 09042, Monserrato (CA), Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy; Unità Operativa University of Cagliari, Italy; Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| |
Collapse
|
25
|
|
26
|
Tanimoto Y, Noro SI. Influence of carbohydrate polymer shaping on organic dye adsorption by a metal-organic framework in water. RSC Adv 2021; 11:23707-23713. [PMID: 35479818 PMCID: PMC9036605 DOI: 10.1039/d1ra03348d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/26/2021] [Indexed: 01/24/2023] Open
Abstract
A number of studies have been conducted to develop new metal-organic frameworks (MOFs) as adsorbents for the removal of contaminants from polluted water. However, few reports exist describing detailed and thorough examinations of the effects of shaping on the adsorption properties of MOFs. In this study, a thorough analysis and comparison was conducted of the Orange II and Rhodamine B dye adsorption properties of unshaped MIL-100(Fe) (MIL) particles and alginate polymer-shaped MIL beads (MIL-alg). The adsorption affinities of Orange II and Rhodamine B for unshaped MIL were observed to be higher than those for shaped MIL-alg because partial coating of the surface of MIL particles by alginate polymer weakens adsorption forces. Kinetic analysis using a two-compartment model indicates that the contribution of the slow step in the mechanistic pathway for adsorption is more pronounced in MIL-alg compared to MIL because slow dye diffusion takes place in the alginate polymer. We believe that these fundamental findings will have a beneficial impact on approaches to design shaped MOFs that display improved dye removal performance.
Collapse
Affiliation(s)
- Yutaro Tanimoto
- Graduate School of Environmental Science, Hokkaido University Sapporo 060-0810 Japan
| | - Shin-Ichiro Noro
- Graduate School of Environmental Science, Hokkaido University Sapporo 060-0810 Japan
- Faculty of Environmental Earth Science, Hokkaido University Sapporo 060-0810 Japan
| |
Collapse
|
27
|
|
28
|
Liu X, Zhang Q, Wang R, Li H. Sustainable Conversion of Biomass-derived Carbohydrates into Lactic Acid Using Heterogeneous Catalysts. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346106666191127123730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past decade, increasing attention has been paid to the exploration of environmentalfriendly
and alternative resources to prepare basic chemicals for relieving the stress of fossil resources
and environmental issues. Lactic acid (LA, 2-hydroxypropanoic acid), the biomass-derived platform
molecule, has been used intensively in food, pharmaceuticals, and cosmetics. Considering the fermentation
method for lactic acid production possesses environmental impact and high-cost issues, chemocatalytic
approaches to manufacturing LA from biomass have attracted much attention due to higher selectivities
and lower costs. This paper emphasizes a review on the state-of-the-art production of LA from triose,
hexose, cellulose and other biomass over heterogeneous acidic and alkaline catalysts.
Collapse
Affiliation(s)
- Xiaofang Liu
- Guizhou Engineering Research Center for Fruit Processing, Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, China
| | - Qiuyun Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, China
| | - Rui Wang
- Guizhou Engineering Research Center for Fruit Processing, Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
29
|
Mahmoudi F, Amini MM, Sillanpää M. Hydrothermal synthesis of novel MIL-100(Fe)@SBA-15 composite material with high adsorption efficiency towards dye pollutants for wastewater remediation. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
|
31
|
Xu J, Xu J, Jiang S, Cao Y, Xu K, Zhang Q, Wang L. Facile synthesis of a novel Ag 3PO 4/MIL-100(Fe) Z-scheme photocatalyst for enhancing tetracycline degradation under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37839-37851. [PMID: 32613509 DOI: 10.1007/s11356-020-09903-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel visible light-driven heterostructure Ag3PO4/MIL-100(Fe) composite photocatalyst was successfully synthesized via facile chemical deposition method at room temperature. Especially when the mass ratio of Ag3PO4 was 20% of MIL-100(Fe) (APM-2), it displayed the best photocatalytic performance, for which the degradation rate of tetracycline (TC) in conventional environment was 6.8 times higher than that of bare MIL-100(Fe). In addition, the effects of the initial concentration and pH of the solution on the degradation of tetracycline were also studied, and the results showed that the degradation of tetracycline was more favorable in a weakly alkaline environment. The excellent performance of Ag3PO4/MIL-100(Fe) composites was attributed to the fact that on the basis of having adequate photocatalytic active sites, modifying MIL-100(Fe) with an appropriate amount of Ag3PO4 particles can more effectively separate photogenerated electron-hole pairs. Five cycles of experiments showed that APM-2 has good photostability. Lastly, it was proved through quenching experiments that •O2-, h+, and •OH all played corresponding roles in the degradation process, and a possible Z-scheme heterostructure photocatalytic degradation mechanism was proposed.
Collapse
Affiliation(s)
- Jun Xu
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Jinmei Xu
- Changzhou University Huaide College, Jingjiang, 214500, China
| | - Shanqing Jiang
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yu Cao
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Kailin Xu
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Qiuya Zhang
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Liping Wang
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China.
- Changzhou University Huaide College, Jingjiang, 214500, China.
| |
Collapse
|
32
|
Nivetha R, Gothandapani K, Raghavan V, Jacob G, Sellappan R, Bhardwaj P, Pitchaimuthu S, Kannan ANM, Jeong SK, Grace AN. Highly Porous MIL-100(Fe) for the Hydrogen Evolution Reaction (HER) in Acidic and Basic Media. ACS OMEGA 2020; 5:18941-18949. [PMID: 32775895 PMCID: PMC7408201 DOI: 10.1021/acsomega.0c02171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
The present study reports the synthesis of a porous Fe-based MOF named MIL-100(Fe) by a modified hydrothermal method without the HF process. The synthesis gave a high surface area with the specific surface area calculated to be 2551 m2 g-1 and a pore volume of 1.407 cm3 g-1 with an average pore size of 1.103 nm. The synthesized electrocatalyst having a high surface area is demonstrated as an excellent electrocatalyst for the hydrogen evolution reaction investigated in both acidic and alkaline media. As desired, the electrochemical results showed low Tafel slopes (53.59 and 56.65 mV dec-1), high exchange current densities (76.44 and 72.75 mA cm-2), low overpotentials (148.29 and 150.57 mV), and long-term stability in both media, respectively. The high activity is ascribed to the large surface area of the synthesized Fe-based metal-organic framework with porous nature.
Collapse
Affiliation(s)
- Ravi Nivetha
- Centre
for Nanotechnology Research, VIT University, Vellore 632014, India
| | | | - Vimala Raghavan
- Centre
for Nanotechnology Research, VIT University, Vellore 632014, India
| | - George Jacob
- Centre
for Nanotechnology Research, VIT University, Vellore 632014, India
| | - Raja Sellappan
- Centre
for Nanotechnology Research, VIT University, Vellore 632014, India
| | - Preetam Bhardwaj
- Centre
for Nanotechnology Research, VIT University, Vellore 632014, India
| | - Sudhagar Pitchaimuthu
- Photocatalyst
and Coatings Group, SPECIFIC, College of Engineering, Swansea University (Bay Campus), Fabian Way, Swansea SA1
8EN,U.K.
| | | | - Soon Kwan Jeong
- Climate
Change Technology Research Division, Korea
Institute of Energy Research, Yuseong-gu, Daejeon 305-343, South Korea
| | | |
Collapse
|
33
|
Iglesias J, Martínez-Salazar I, Maireles-Torres P, Martin Alonso D, Mariscal R, López Granados M. Advances in catalytic routes for the production of carboxylic acids from biomass: a step forward for sustainable polymers. Chem Soc Rev 2020; 49:5704-5771. [PMID: 32658221 DOI: 10.1039/d0cs00177e] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Polymers are ubiquitously present in our daily life because they can meet a wide range of needs and fields of applications. This success, based on an irresponsible linear consumption of plastics and the access to cheap oil, is creating serious environmental problems. Two lines of actions are needed to cope with them: to adopt a circular consumption of plastics and to produce renewable carbon-neutral monomers. This review analyses the recent advances in the chemocatalytic processes for producing biomass-derived carboxylic acids. These renewable carboxylic acids are involved in the synthesis of relevant general purpose and specialty polyesters and polyamides; some of them are currently derived from oil, while others can become surrogates of petrochemical polymers due to their excellent performance properties. Polyesters and polyamides are very suitable to be depolymerised to other valuable chemicals or to their constituent monomers, what facilitates the circular reutilisation of these monomers. Different types of carboxylic acids have been included in this review: monocarboxylic acids (like glycolic, lactic, hydroxypropanoic, methyl vinyl glycolic, methyl-4-methoxy-2-hydroxybutanoic, 2,5-dihydroxypent-3-enoic, 2,5,6-trihydroxyhex-3-enoic acids, diphenolic, acrylic and δ-amino levulinic acids), dicarboxylic acids (2,5-furandicarboxylic, maleic, succinic, adipic and terephthalic acids) and sugar acids (like gluconic and glucaric acids). The review evaluates the technology status and the advantages and drawbacks of each route in terms of feedstock, reaction pathways, catalysts and economic and environmental evaluation. The prospects and the new research that should be undertaken to overcome the main problems threatening their economic viability or the weaknesses that prevent their commercial implementation have also been underlined.
Collapse
Affiliation(s)
- J Iglesias
- Chemical & Environmental Engineering Group, Universidad Rey Juan Carlos, C/Tulipan, s/n, Mostoles, Madrid 28933, Spain
| | - I Martínez-Salazar
- EQS Group (Sustainable Energy and Chemistry Group), Institute of Catalysis and Petrochemistry (CSIC), C/Marie Curie, 2, 28049 Madrid, Spain.
| | - P Maireles-Torres
- Universidad de Málaga, Departamento de Química Inorgánica, Cristalografia y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, 29071 Málaga, Spain
| | - D Martin Alonso
- Glucan Biorenewables LLC, Madison, WI 53719, USA and Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - R Mariscal
- EQS Group (Sustainable Energy and Chemistry Group), Institute of Catalysis and Petrochemistry (CSIC), C/Marie Curie, 2, 28049 Madrid, Spain.
| | - M López Granados
- EQS Group (Sustainable Energy and Chemistry Group), Institute of Catalysis and Petrochemistry (CSIC), C/Marie Curie, 2, 28049 Madrid, Spain.
| |
Collapse
|
34
|
Abstract
MIL-101(Fe) was explored for the first time for the catalytic conversion of glucose into lactic acid (LA). The as-synthesized MIL-101(Fe) was successfully characterized, and its higher specific surface area, porosity, and feasible acid properties were confirmed to determine the remarkable catalytic activity in glucose-to-LA conversion (up to 25.4% yield) compared with other catalysts like MIL-101(Cr, Al) and UiO-66(Zr). The reaction parameters including temperature, reaction time, and substrate species as well as catalyst reusability were discussed.
Collapse
|
35
|
Bavykina A, Kolobov N, Khan IS, Bau JA, Ramirez A, Gascon J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem Rev 2020; 120:8468-8535. [DOI: 10.1021/acs.chemrev.9b00685] [Citation(s) in RCA: 578] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anastasiya Bavykina
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Nikita Kolobov
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Il Son Khan
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Jeremy A. Bau
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Adrian Ramirez
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
36
|
Functionalized Metal-Organic Framework Catalysts for Sustainable Biomass Valorization. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/1201923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Currently, pristine and functionalized metal-organic frameworks (MOFs) are introduced in heterogeneous catalysis for biomass upgrading owing to the specific texture properties including regular higher-order structure, high specific surface area, and the precisely tailored diversity. The purpose of this review is to afford a comprehensive discussion of the most applications in biomass refinery. We highlight recently developed four types of MOFs like pristine MOFs and their composites, MOF-supported metal NPs, acid-functionalized MOFs, and biofunctionalized MOFs for production of green, sustainable, and industrially acceptable biomass-derived platform molecules: (1) upgrading of saccharides, (2) upgrading of furan derivatives, and (3) upgrading of other biobased compounds.
Collapse
|
37
|
Bhattacharjee A, Purkait MK, Gumma S. Doxorubicin Loading Capacity of MIL-100(Fe): Effect of Synthesis Conditions. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01456-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Steenhaut T, Hermans S, Filinchuk Y. Green synthesis of a large series of bimetallic MIL-100(Fe,M) MOFs. NEW J CHEM 2020. [DOI: 10.1039/d0nj00257g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present a scalable and green methodology to synthesize a large variety of MIL-100(Fe,M), metal-doped iron-based MOFs with high thermal stability and surface areas.
Collapse
Affiliation(s)
| | - Sophie Hermans
- Université Catholique de Louvain
- MOST
- 1348 Louvain-la-Neuve
- Belgium
| | | |
Collapse
|
39
|
Ponchai P, Adpakpang K, Thongratkaew S, Chaipojjana K, Wannapaiboon S, Siwaipram S, Faungnawakij K, Bureekaew S. Engineering zirconium-based UiO-66 for effective chemical conversion of d-xylose to lactic acid in aqueous condition. Chem Commun (Camb) 2020; 56:8019-8022. [DOI: 10.1039/d0cc03424j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Local defects and crystallinity of UiO-66 were systematically engineered, yielding an effective catalyst for lactic acid production from d-xylose via a hydrothermal reaction.
Collapse
Affiliation(s)
- Panyapat Ponchai
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Wangchan
- Thailand
| | - Kanyaporn Adpakpang
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Wangchan
- Thailand
| | - Sutarat Thongratkaew
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Klong Luang
- Thailand
| | - Kawisa Chaipojjana
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Klong Luang
- Thailand
| | | | - Siwarut Siwaipram
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Wangchan
- Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Klong Luang
- Thailand
- Research Network of NANOTEC-VISTEC on Nanotechnology for Energy
| | - Sareeya Bureekaew
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Wangchan
- Thailand
- Research Network of NANOTEC-VISTEC on Nanotechnology for Energy
| |
Collapse
|
40
|
Chaturvedi G, Kaur A, Umar A, Khan MA, Algarni H, Kansal SK. Removal of fluoroquinolone drug, levofloxacin, from aqueous phase over iron based MOFs, MIL-100(Fe). J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121029] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Zhang H, Xu C(C, Zhou K, Yang S. Chemo-catalytic Esterification and Transesterification over Organic Polymer-Based Catalysts for Biodiesel Synthesis. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190715124659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major sources of fuels in today's world predominantly come from traditional
fossil resources such as coal, petroleum and natural gas, which are limited and nonrenewable.
Meanwhile, their consumption releases large undesirable greenhouse gas and
noxious gases. Therefore, the development of renewable and sustainable feedstocks to replace
traditional fossil resources has attracted great interest. Biodiesel, mainly produced
through esterification and transesterification reaction from renewable oil resources using
acids and bases as catalysts, is deemed as a green and renewable biofuel that shows enormous
potential to replace fossil diesel. Compared to homogeneous catalytic systems, the
development of efficient and stable heterogeneous catalysts is vital to synthesizing biodiesel
in an efficient and green manner. Among the developed solid catalysts, organic polymer-
based catalytic materials are an extremely important topic, wherein distinct advantages of higher concentration
of active sites and better stability of active groups are associated with each other. In this review, effective
catalytic valorization of sustainable feedstocks into biodiesel via transesterification and esterification reactions
mediated by functionalized organic polymer-based catalysts is discussed. Special emphasis has been
given to the synthetic routes to the versatile organic polymers-based catalytic materials, and some other interesting
catalytic roles derived from physicochemical property, like adjustable hydrophilicity and hydrophobicity
along with swelling property in transesterification and esterification, are also illustrated.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Gizhou University, Guiyang, Guizhou 550025, China
| | - Chunbao (Charles) Xu
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Western University, London, Ontrario N6A 5B9, Canada
| | - Kaichen Zhou
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Gizhou University, Guiyang, Guizhou 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Gizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
42
|
Wang H, Zhao R, Qin J, Hu H, Fan X, Cao X, Wang D. MIL-100(Fe)/Ti 3C 2 MXene as a Schottky Catalyst with Enhanced Photocatalytic Oxidation for Nitrogen Fixation Activities. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44249-44262. [PMID: 31692326 DOI: 10.1021/acsami.9b14793] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new microporous MIL-100(Fe)/Ti3C2 MXene composite was constructed as a non-noble metal-based Schottky junction photocatalyst with improved nitrogen fixation ability. Ti3C2 MXene nanosheets exhibited excellent metal conductivity and were employed as two-dimensional support to optimize the composite's energy band structure. MIL-100(Fe) with a large specific surface area was used as an adsorbent and a photocatalytic oxidation center. The MIL-100(Fe)/Ti3C2 MXene composite not only exhibited higher thermal stability but also showed significantly increased nitrogen fixation activity under visible light. The NO conversion rate of the composite catalyst was about four and three times higher than that of the pure Ti3C2 MXene and the pure MIL-100(Fe) samples, respectively. Although adsorption plays an important role in the nitrogen fixation process, the synergistic effects of the Schottky junctions are the main cause of the enhanced photocatalytic activity. The built-in electric field can be generated to form charge-transfer channels, which help to achieve a desirable photocatalytic activity.
Collapse
|
43
|
Yeganeh AD, Amini MM, Safari N. In situ synthesis and encapsulation of copper phthalocyanine into MIL-101(Cr) and MIL-100(Fe) pores and investigation of their catalytic performance in the epoxidation of styrene. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619501323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work, copper phthalocyanine (CuPc) was encapsulated into mesocages of MIL-101(Cr) and MIL-100(Fe) by assembling CuPc’s constitutional fractions using a deep eutectic solvent. The prepared materials, CuPc@MIL-101(Cr) and CuPc@MIL-100(Fe), were characterized by powder X-ray diffraction (PXRD), FT-IR, UV-vis and diffuse reflectance UV (DR-UV) spectroscopies, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ICP-OES spectrometry. The prepared materials were used as heterogeneous catalysts for catalytic epoxidation of styrene with molecular oxygen and also tert-butyl hydroperoxide (TBHP) as oxidants in acetonitrile as a solvent. The impact of MOFs and the role of the CuPc complex as the active species in the MOFs’ cages in the epoxidation of styrene were investigated. Among the prepared catalysts, CuPc@MIL-101(Cr) showed the best performance. The heterogeneity of the catalysts was examined by a hot filtration test and ICP-OES of the filtrates after the reaction. Spent catalysts were analyzed by PXRD, FT-IR, UV-DRS, and TEM for reusability investigation and also to further explore the heterogeneous nature of the hybrid materials. Results showed that the prepared catalysts could be recycled and used for several concoctive times without a considerable drop in activity.
Collapse
Affiliation(s)
| | - Mostafa M. Amini
- Department of Chemistry, Shahid Beheshti University, G.C., Tehran 1983963113, Iran
| | - Nasser Safari
- Department of Chemistry, Shahid Beheshti University, G.C., Tehran 1983963113, Iran
| |
Collapse
|
44
|
Zhang H, Li H, Xu CC, Yang S. Heterogeneously Chemo/Enzyme-Functionalized Porous Polymeric Catalysts of High-Performance for Efficient Biodiesel Production. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02748] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chunbao Charles Xu
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450066, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
45
|
Yang W, Guo G, Mei Z, Yu Y. Deep oxidative desulfurization of model fuels catalysed by immobilized ionic liquid on MIL-100(Fe). RSC Adv 2019; 9:21804-21809. [PMID: 35518850 PMCID: PMC9066548 DOI: 10.1039/c9ra03035b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/06/2019] [Indexed: 11/21/2022] Open
Abstract
Deep desulfurization of fossil fuels has become urgently required because of the serious pollution by the large-scale use of fossil fuels. In this study, [PrSO3HMIm]HSO4@MIL-100(Fe) was synthesized by wet-impregnation of the ionic liquid (IL) of [PrSO3HMIm]HSO4 on MIL-100(Fe). The construction of [PrSO3HMIm]HSO4@MIL-100(Fe) was then confirmed by X-ray powder diffraction, N2 adsorption-desorption experiments, infrared spectroscopy and elemental analysis, and then applied in the oxidative desulfurization of model fuels. In comparison with the corresponding IL, [PrSO3HMIm]HSO4@MIL-100(Fe) showed an enhanced performance in the desulfurization rate of model fuels due to the increase of the mass transfer rate. Under the optimized conditions (oxidant to sulphur ratio = 25, oil to acetonitrile ratio = 1, and temperature = 60 °C), a sulphur removal rate of 99.3% was observed (initial sulphur concentration = 50 ppm). The sulphur removal of three sulphur compounds by catalytic oxidation and extraction followed the order of dibenzothiophene (DBT) > thiophene (T) > benzothiophene (BT).
Collapse
Affiliation(s)
- WanXin Yang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 China
| | - Guoqing Guo
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 China
| | - Zhihong Mei
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 China
| | - Yinghao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 China
| |
Collapse
|
46
|
Mortazavi S, Abbasi A, Masteri‐Farahani M, Farzaneh F. Sulfonic Acid Functionalized MIL‐101(Cr) Metal‐Organic Framework for Catalytic Production of Acetals. ChemistrySelect 2019. [DOI: 10.1002/slct.201901070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Alireza Abbasi
- School of chemistryCollege of ScienceUniversity of Tehran Tehran Iran
| | | | - Faezeh Farzaneh
- Chemistry DepartmentFaculty of Physics and ChemistryAlzahra University Vanak, Tehran Iran
| |
Collapse
|
47
|
Hall JN, Bollini P. Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00228b] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides an overview of the current understanding of structure–catalytic properties of open-metal sites in metal organic framework materials.
Collapse
Affiliation(s)
- Jacklyn N. Hall
- Department of Chemical & Biomolecular Engineering
- University of Houston
- Houston
- USA
| | - Praveen Bollini
- Department of Chemical & Biomolecular Engineering
- University of Houston
- Houston
- USA
| |
Collapse
|
48
|
Chemocatalytic Production of Lactates from Biomass-Derived Sugars. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1155/2018/7617685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent decades, a great deal of attention has been paid to the exploration of alternative and sustainable resources to produce biofuels and valuable chemicals, with aims of reducing the reliance on depleting confined fossil resources and alleviating serious economic and environmental issues. In line with this, lignocellulosic biomass-derived lactic acid (LA, 2-hydroxypropanoic acid), to be identified as an important biomass-derived commodity chemical, has found wide applications in food, pharmaceuticals, and cosmetics. In spite of the current fermentation of saccharides to produce lactic acid, sustainability issues such as environmental impact and high cost derived from the relative separation and purification process will be growing with the increasing demands of necessary orders. Alternatively, chemocatalytic approaches to manufacture LA from biomass (i.e., inedible cellulose) have attracted extensive attention, which may give rise to higher productivity and lower costs related to product work-up. This work presents a review of the state-of-the-art for the production of LA using homogeneous, heterogeneous acid, and base catalysts, from sugars and real biomass like rice straw, respectively. Furthermore, the corresponding bio-based esters lactate which could serve as green solvents, produced from biomass with chemocatalysis, is also discussed. Advantages of heterogeneous catalytic reaction systems are emphasized. Guidance is suggested to improve the catalytic performance of heterogeneous catalysts for the production of LA.
Collapse
|
49
|
Rivera-Torrente M, Filez M, Hardian R, Reynolds E, Seoane B, Coulet MV, Oropeza Palacio FE, Hofmann JP, Fischer RA, Goodwin AL, Llewellyn PL, Weckhuysen BM. Metal-Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation. Chemistry 2018; 24:7498-7506. [PMID: 29709084 PMCID: PMC6519236 DOI: 10.1002/chem.201800694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Indexed: 01/18/2023]
Abstract
Because of their high tunability and surface area, metal-organic frameworks (MOFs) show great promise as supports for metal nanoparticles. Depending on the synthesis route, MOFs may contain defects. Here, we show that highly crystalline MIL-100(Fe) and disordered Basolite® F300, with identical iron 1,3,5-benzenetricarboxylate composition, exhibit very divergent properties when used as a support for Pd nanoparticle deposition. While MIL-100(Fe) shows a regular MTN-zeotype crystal structure with two types of cages, Basolite® F300 lacks long-range order beyond 8 Å and has a single-pore system. The medium-range configurational linker-node disorder in Basolite® F300 results in a reduced number of Lewis acid sites, yielding more hydrophobic surface properties compared to hydrophilic MIL-100(Fe). The hydrophilic/hydrophobic nature of MIL-100(Fe) and Basolite® F300 impacts the amount of Pd and particle size distribution of Pd nanoparticles deposited during colloidal synthesis and dry impregnation methods, respectively. It is suggested that polar (apolar) solvents/precursors attractively interact with hydrophilic (hydrophobic) MOF surfaces, allowing tools at hand to increase the level of control over, for example, the nanoparticle size distribution.
Collapse
Affiliation(s)
- Miguel Rivera-Torrente
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Matthias Filez
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Rifan Hardian
- Aix-Marseille University, CNRS, MADIREL (UMR 7246), Centre de St Jérôme, 13013, Marseille Cedex, France
| | - Emily Reynolds
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Beatriz Seoane
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Marie-Vanessa Coulet
- Aix-Marseille University, CNRS, MADIREL (UMR 7246), Centre de St Jérôme, 13013, Marseille Cedex, France
| | - Freddy E Oropeza Palacio
- Laboratory of Inorganic Materials Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Jan P Hofmann
- Laboratory of Inorganic Materials Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Roland A Fischer
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.,Catalysis Research Centre, Technische Universität München, Ernst-Otto-Fischer Straße 1, 85748, Garching, Germany
| | - Andrew L Goodwin
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Philip L Llewellyn
- Aix-Marseille University, CNRS, MADIREL (UMR 7246), Centre de St Jérôme, 13013, Marseille Cedex, France
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| |
Collapse
|
50
|
Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 2018; 47:8349-8402. [DOI: 10.1039/c8cs00410b] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functionalised heterogeneous catalysts show great potentials for efficient valorisation of renewable biomass to value-added chemicals and high-energy density fuels.
Collapse
Affiliation(s)
- Putla Sudarsanam
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Ruyi Zhong
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
- Dalian Institute of Chemical Physics
| | - Sander Van den Bosch
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Simona M. Coman
- University of Bucharest
- Department of Organic Chemistry
- Biochemistry and Catalysis
- Bucharest 030016
- Romania
| | - Vasile I. Parvulescu
- University of Bucharest
- Department of Organic Chemistry
- Biochemistry and Catalysis
- Bucharest 030016
- Romania
| | - Bert F. Sels
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| |
Collapse
|