1
|
Prihanto A, Muryanto S, Sancho Vaquer A, Schmahl WW, Ismail R, Jamari J, Bayuseno AP. In-depth knowledge of the low-temperature hydrothermal synthesis of nanocrystalline hydroxyapatite from waste green mussel shell ( Perna Viridis). ENVIRONMENTAL TECHNOLOGY 2024; 45:2375-2387. [PMID: 36695167 DOI: 10.1080/09593330.2023.2173087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
ABSTRACTThis study presents the use of a low-temperature hydrothermal method for extracting calcium sources from green mussel shell (P. Viridis) wastes and converting them into synthetic nanosized hydroxyapatite (HA). In this study, raw mussel shells were washed, pulverised, and sieved to start producing a fine calcium carbonate-rich powder. XRD quantitative analysis confirmed that the powder contains 97.6 wt. % aragonite. This powder was then calcined for 5 h at 900 °C to remove water, salt, and mud, yielding a calcium-rich feedstock with major minerals of calcite (68.7 wt.%), portlandite (24.7 wt.%), and minor aragonite (6.5 wt.%). The calcined powders were dissolved in aqueous stock solutions of HNO3 and NH4OH before hydrothermally reacting with phosphoric acid [(NH4)2HPO4], yielding pure, nanoscale (16-18 nm) carbonated HA crystals, according to XRD, FT-IR, and SEM analyses. The use of a low-temperature hydrothermal method for a feedstock powder produced by the calcination of low-cost mussel shell wastes would be a valuable processing approach for the industry's development of large-scale hydroxyapatite nanoparticle production.
Collapse
Affiliation(s)
- A Prihanto
- Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
- Chemical Engineering Vocational Program, Catholic Polytechnic Mangun Wijaya, Semarang, Indonesia
| | - S Muryanto
- Department of Chemical Engineering, UNTAG University in Semarang, Semarang, Indonesia
| | - A Sancho Vaquer
- Department of Earth-and Environmental Sciences, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - W W Schmahl
- Department of Earth-and Environmental Sciences, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - R Ismail
- Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
| | - J Jamari
- Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
| | - A P Bayuseno
- Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
2
|
Villaseñor-Cerón LS, Mendoza-Anaya D, López-Ortiz S, Rosales-Ibañez R, Rodríguez-Martínez JJ, Reyes-Valderrama MI, Rodríguez-Lugo V. Biocompatibility analysis and chemical characterization of Mn-doped hydroxyapatite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:40. [PMID: 37515640 PMCID: PMC10386974 DOI: 10.1007/s10856-023-06744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
The present work studies the effect of Mn doping on the crystalline structure of the Hap synthesized by the hydrothermal method at 200 °C for 24 h, from Ca(OH)2 and (NH4)2HPO4, incorporating MnCl2 to 0.1, 0.5, 1.0, 1.5 and 2.0 %wt of Mn concentrations. Samples were characterized by the X-Ray Diffraction technique, which revealed the diffraction peaks that corresponded to the hexagonal and monoclinic phase of the Hap; it was observed that the average size of crystallite decreased from 23.67 to 22.69 nm as the concentration of Mn increased. TEM shows that in all samples, there are two distributions of particle sizes; one corresponds to nanorods with several tens of nanometers in length, and the other in which the diameter and length are very close. FTIR analysis revealed absorption bands corresponding to the PO4-3 and OH- groups characteristic of the Hap. It was possible to establish a substitution mechanism between the Mn and the ions of Ca+2 of the Hap. From the Alamar blue test, a cell viability of 86.88% ± 5 corresponding to the sample of Hap at 1.5 %wt Mn was obtained, considered non-cytotoxic according to ISO 10993-5. It also evaluated and demonstrated the good osteoinductive properties of the materials, which were verified by histology and immunofluorescence expression of osteogenic markers. Adhesion, viability, biocompatibility and osteoinductive properties, make these materials candidates for future applications in bone tissue engineering with likely uses in regenerative medicine.
Collapse
Affiliation(s)
- L S Villaseñor-Cerón
- Área Académica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42184, Pachuca, Mexico
| | - D Mendoza-Anaya
- Instituto Nacional de Investigaciones Nucleares; Carr. México-Toluca s/n La Marquesa, C.P. 52750, Ocoyoacac, Estado de México, México
| | - S López-Ortiz
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec1570, Privadas del Pedregal, San Luis Potosí, SLP, México
| | - R Rosales-Ibañez
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Avenida Tenayuca-Chalmita S/N, Cuautepec Barrio Bajo, Alcaldía Gustavo A. Madero, CP. 07239, Ciudad de México, México
| | - J J Rodríguez-Martínez
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Avenida Tenayuca-Chalmita S/N, Cuautepec Barrio Bajo, Alcaldía Gustavo A. Madero, CP. 07239, Ciudad de México, México
| | - M I Reyes-Valderrama
- Área Académica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42184, Pachuca, Mexico
| | - V Rodríguez-Lugo
- Área Académica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42184, Pachuca, Mexico.
| |
Collapse
|
3
|
Hartati YW, Irkham I, Zulqaidah S, Syafira RS, Kurnia I, Noviyanti AR, Topkaya SN. Recent advances in hydroxyapatite-based electrochemical biosensors: Applications and future perspectives. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Noviyanti AR, Rahayu I, Fauzia RP, Risdiana. The effect of Mg concentration to mechanical strength of hydroxyapatite derived from eggshell. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Modulated Monoclinic Hydroxyapatite: The Effect of pH in the Microwave Assisted Method. MINERALS 2021. [DOI: 10.3390/min11030314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite (HAp) is a natural hard tissue constituent widely used for bone and tooth replacement engineering. In the present work, synthetic HAp was obtained from calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and ammonium phosphate dibasic (NH4)2HPO4 following an optimized microwave assisted hydrothermal method. The effect of pH was evaluated by the addition of ammonium hydroxide (NH4OH). Hence, different characterization techniques were used to determine its influence on the resulted HAp powders’ size, shape, and crystallinity. By Transmission Electron Microscopy (TEM), it was observed that the reaction pH environment modifies the morphology of HAp, and a shape evolution, from sub-hedral particles at pH = 7 to rod-like nanosized HAp at pH = 10, was confirmed. Using the X-ray Diffraction (XRD) technique, the characteristic diffraction peaks of the monoclinic phase were identified. Even if the performed Rietveld analysis indicated the presence of both phases (hexagonal and monoclinic), monoclinic HAp prevails in 95% with an average crystallite size of about 23 nm. The infrared spectra (FTIR) showed absorption bands at 3468 cm−1 and 630 cm−1 associated with OH− of hydroxyapatite, and bands at 584 cm−1, 960 cm−1, and 1090 cm−1 that correspond to the PO43− and CO32− characteristic groups. In summary, this work contributes to obtaining nanosized rod-like monoclinic HAp by a simple and soft method that has not been previously reported.
Collapse
|
6
|
Barua R, Daly-Seiler CS, Chenreghanianzabi Y, Markel D, Li Y, Zhou M, Ren W. Comparing the physicochemical properties of dicalcium phosphate dihydrate (DCPD) and polymeric DCPD (P-DCPD) cement particles. J Biomed Mater Res B Appl Biomater 2021; 109:1644-1655. [PMID: 33655715 DOI: 10.1002/jbm.b.34822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/29/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022]
Abstract
We developed a new and injectable poly-dicalcium phosphate dihydrate (P-DCPD) forming cement. The key structural difference between P-DCPD and classical DCPD is that P-DCPD is composed of interconnected P-DCPD crystals by interlocking to the polyphosphate chains. In contrast, DCPD is composed of a package of DCPD crystals with weak mutual ionic bonding. The purpose of this continuing study was to compare the physicochemical properties between P-DCPD and DCPD cement particles. Data collected from SEM, X-ray diffraction, and Raman Spectroscopy approaches demonstrated that P-DCPD has a more stable chemical structure than DCPD as evidenced by much less transformation to hydroxyapatite (HA) during setting. Nanoindentation showed a similar hardness while the elastic modulus of P-DCPD is much lower than DCPD that might be due to the much less HA transformation of P-DCPD. P-DCPD has much lower zeta potential and less hydrophilicity than DCPD because of its entangled and interconnected polyphosphate chains. It is expected that superhydrophilic DCPD undergoes faster dissolution than P-DCPD in an aqueous environment. Another interesting finding is that the pH of eluent from P-DCPD is more neutral (6.6-7.1) than DCPD (5.5-6.5). More extensive experiments are currently underway to further evaluate the potential impacts of the different physiochemical performance observed of P-DCPD and DCPD cement particles on the biocompatibility, degradation behavior and bone defect healing efficacy both in vivo and in vitro.
Collapse
Affiliation(s)
- Rajib Barua
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Conor S Daly-Seiler
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | | | - David Markel
- Department of Orthopaedics, Providence Hospital, Southfield, Michigan, USA
| | - Yawen Li
- Department of Biomedical Engineering, Lawrence Technological University, Southfield, Michigan, USA
| | - Meng Zhou
- Department of Natural Sciences, Lawrence Technological University, Southfield, Michigan, USA
| | - Weiping Ren
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
7
|
New Chemicals and Routes for the Preparation of Gelatin/HA Composites using the Wet Precipitation Method. JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.2.46-50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydroxyapatite (HA) is a material that has many uses in a wide variety of applications such as bone repair, bone implants, and bone drug delivery systems. However, the main weakness of this material is its mechanical strength, which HA is not enough to be directly applied. Gelatin addition is used to improve the mechanical properties that can support material properties for the load-bearing application. This research aimed to obtain gelatin/HA composites with high mechanical strength. This goal is achieved by finding the optimum composite composition (addition of 20, 30, and 40% w/w gelatin), CaO precursors from chicken eggshells, and gradual composite preparation. The preparation of gelatin/HA composites was carried out using the wet precipitation method. The chemical bonding, the compressive strength of HA and gelatin/HA composites, and also morphologies were analyzed by Fourier Transform Infra-Red (FTIR), Universal Testing Machine, and Scanning Electron Microscopy (SEM) respectively. The FTIR spectra show there are chemical bonds between amide and carboxyl in gelatin and Ca2+ in HA. The best compressive strength obtained at the composition of 20% gelatin/HA composite is 99.3 MPa (meanwhile HA is 81.5 MPa). The addition of gelatin to HA increases the particle density; this contributes to the increase in mechanical strength.
Collapse
|