1
|
Lykos C, Bairamis F, Efthymiou C, Konstantinou I. Synthesis and Characterization of Composite WO 3 Fibers/g-C 3N 4 Photocatalysts for the Removal of the Insecticide Clothianidin in Aquatic Media. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1045. [PMID: 38921921 PMCID: PMC11206630 DOI: 10.3390/nano14121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Photocatalysis is a prominent alternative wastewater treatment technique that has the potential to completely degrade pesticides as well as other persistent organic pollutants, leading to detoxification of wastewater and thus paving the way for its efficient reuse. In addition to the more conventional photocatalysts (e.g., TiO2, ZnO, etc.) that utilize only UV light for activation, the interest of the scientific community has recently focused on the development and application of visible light-activated photocatalysts like g-C3N4. However, some disadvantages of g-C3N4, such as the high recombination rate of photogenerated charges, limit its utility. In this light, the present study focuses on the synthesis of WO3 fibers/g-C3N4 Z-scheme heterojunctions to improve the efficiency of g-C3N4 towards the photocatalytic removal of the widely used insecticide clothianidin. The effect of two different g-C3N4 precursors (urea and thiourea) and of WO3 fiber content on the properties of the synthesized composite materials was also investigated. All aforementioned materials were characterized by a number of techniques (XRD, SEM-EDS, ATR-FTIR, Raman spectroscopy, DRS, etc.). According to the results, mixing 6.5% W/W WO3 fibers with either urea or thiourea derived g-C3N4 significantly increased the photocatalytic activity of the resulting composites compared to the precursor materials. In order to further elucidate the effect of the most efficient composite photocatalyst in the degradation of clothianidin, the generated transformation products were tentatively identified through UHPLC tandem high-resolution mass spectroscopy. Finally, the detoxification effect of the most efficient process was also assessed by combining the results of an in-vitro methodology and the predictions of two in-silico tools.
Collapse
Affiliation(s)
- Christos Lykos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
| | - Feidias Bairamis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
| | - Christina Efthymiou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
- Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
2
|
Synergetic interfacial charge transfer with Z-scheme heterostructure and S–Mo–S linkage in one-pot synthesized SnIn4S8/MoS2 for efficient photocatalytic activity. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Synchronized Wet-chemical Development of 2-Dimensional MoS2 and g-C3N4/MoS2 QDs Nanocomposite as Efficient Photocatalysts for Detoxification of Aqueous Dye Solutions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
R M, Jaleel Uc JR, Pinheiro D, Nk R, Devi Kr S, Park J, Manickam S, Choi MY. Architecture of visible-light induced Z-scheme MoS 2/g-C 3N 4/ZnO ternary photocatalysts for malachite green dye degradation. ENVIRONMENTAL RESEARCH 2022; 214:113742. [PMID: 35753376 DOI: 10.1016/j.envres.2022.113742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of bilayer heterojunctions has received considerable attention recently. Fabrication of novel bilayer composites is of significant interest to improve their photocatalytic efficiency. In this study, molybdenum disulfide (MoS2), a layered dichalcogenide material exhibiting unique properties, in combination with graphitic carbon nitride (g-C3N4), a carbon-based layered material, was fabricated with small amounts of zinc oxide (ZnO). Three composites, MoS2/g-C3N4, MoS2/ZnO, and MoS2/g-C3N4/ZnO were prepared via a simple exfoliation method and characterized by various physicochemical methods. The Z-scheme charge transfer mechanism in the prepared ternary composite improves efficiency by inhibiting the recombination rate of electron-hole pairs. It has shown excellent performance in degrading a major water contaminant, malachite green (MG) dye, under visible light irradiation.
Collapse
Affiliation(s)
- Madhushree R
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, Karnataka, India
| | - Jadan Resnik Jaleel Uc
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, Karnataka, India
| | - Dephan Pinheiro
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, Karnataka, India
| | - Renuka Nk
- Department of Chemistry, University of Calicut, Kerala, 673635, India
| | - Sunaja Devi Kr
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, Karnataka, India.
| | - Juhyeon Park
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
5
|
Huang L, Liu H, Zhang TC, Wang Y, Yuan S. Peroxymonosulfate-Assisted BiVO 4/Exfoliated g-C 3N 4 Heterojunction for High-Performance Photodegradation of Tetracycline Induced by Visible Light. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lijia Huang
- School of Chemical Engineering, Sichuan University, Chengdu610065, China
| | - Hui Liu
- School of Chemical Engineering, Sichuan University, Chengdu610065, China
| | - Tian Cheng Zhang
- Civil and Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, Nebraska68182-0178, United States
| | - Yuan Wang
- School of Chemical Engineering, Sichuan University, Chengdu610065, China
| | - Shaojun Yuan
- School of Chemical Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
6
|
Gamma-Rays Induced Synthesis of Ag-Decorated ZnCo2O4–MoS2 Heterostructure as Novel Photocatalyst and Effective Antimicrobial Agent for Wastewater Treatment Application. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe development of novel semiconductors-based-photocatalysts is a promising strategy for addressing environmental pollution. In the present study, gamma irradiation was utilized to induce the synthesis of the exceptionally efficient Ag-decorated ZnCo2O4–MoS2 heterostructure. XRD and EDX analyses were verified the successful synthesis of Ag-decorated ZnCo2O4–MoS2 heterostructure. Also, SEM and HR-TEM images were illustrated the heterostructure nature of the synthesized photocatalyst in the nanoscale regime. The obtained optical bandgap values verified that photocatalyst possesses a narrow semiconductor bandgap. Further, the Ag-decorated ZnCo2O4–MoS2 heterostructure exhibited superior photodegradation potential towards MB (95.4% removal of the MB). The antimicrobial potency of the synthesized samples had been investigated through ZOI, MIC, growth curve assay, and the effect of UV illumination. Also, the antibiofilm behaviour has been studied. The antibacterial reaction mechanism had been estimated by membrane leakage assay and SEM imaging. The tested samples displayed a positive potency to a broad spectrum of bacteria like Proteus mirabilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. In particular, Ag–MoS2–ZnCo2O4 nanocomposite possessed the highest impact, followed by the spinal ZnCo2O4 NPs towards all the tested pathogenic microbes. In this assessment, the Ag-decorated ZnCo2O4–MoS2 heterostructure has been shown to be a promising candidate for wastewater treatment application.
Collapse
|
7
|
Sheydaei M, Haseli A, Ayoubi-Feiz B, Vatanpour V. MoS 2/N-TiO 2/Ti mesh plate for visible-light photocatalytic ozonation of naproxen and industrial wastewater: comparative studies and artificial neural network modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22454-22468. [PMID: 34787809 DOI: 10.1007/s11356-021-17285-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
This paper presents the results of visible-light assisted photocatalytic ozonation for the degradation of naproxen as a model pharmaceutical pollutant from water using MoS2/N-TiO2 immobilized on a titanium mesh plate in addition to treatment of a real industrial wastewater. The batch studies were performed for naproxen degradation by varying the reaction variables such as ozone flow rate, initial pH and pollutant concertation. It was observed that almost 90% degradation was achieved at pH = 4, ozone flow rate = 3 L min-1 and initial naproxen concentration = 5 mg L-1. The catalyst exhibited constant activity even after seven successive cycles. Comparative studies among sorption, ozonation, photocatalysis, catalytic ozonation and photocatalytic ozonation revealed that the later process had the highest degradation of pollutant. Moreover, an artificial neural network (ANN) model was developed to simulate the performance of visible-light photocatalytic ozonation in naproxen degradation. The developed ANN model could estimate the visible-light photocatalytic ozonation process under the different experimental conditions. Finally, the applicability of the photocatalytic ozonation was successfully approved for industrial wastewater treatment. The results showed that the COD removal efficiency reached 65% within 150 min. HIGHLIGHTS: • MoS2/N-TiO2/Ti was synthesized by the quick electrophoretic deposition method. • The catalyst showed good ability in naproxen degradation via visible-light photocatalytic ozonation. • A three-layer artificial neural network model was developed to predict the naproxen degradation. • Naproxen degradation efficiency through the photocatalytic ozonation was higher than the individual methods. • COD of real wastewater was reduced significantly after the visible-light photocatalytic ozonation process.
Collapse
Affiliation(s)
- Mohsen Sheydaei
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Ali Haseli
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Baharak Ayoubi-Feiz
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| |
Collapse
|
8
|
Sharma P, Singh MK, Mehata MS. Sunlight-driven MoS2 nanosheets mediated degradation of dye (crystal violet) for wastewater treatment. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Sienkiewicz A, Rokicka-Konieczna P, Wanag A, Kusiak-Nejman E, Morawski AW. Artificial Solar Light-Driven APTES/TiO2 Photocatalysts for Methylene Blue Removal from Water. Molecules 2022; 27:molecules27030947. [PMID: 35164212 PMCID: PMC8838937 DOI: 10.3390/molecules27030947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
A visible-light photocatalytic performance of 3-aminopropyltriethoxysilane (APTES)-modified TiO2 nanomaterials obtained by solvothermal modification under elevated pressure, followed by calcination in an argon atmosphere at 800–1000 °C, is presented for the first time. The presence of silicon and carbon in the APTES/TiO2 photocatalysts contributed to the effective delay of the anatase-to-rutile phase transformation and the growth of the crystallites size of both polymorphous forms of TiO2 during heating. Thus, the calcined APTES-modified TiO2 exhibited higher pore volume and specific surface area compared with the reference materials. The change of TiO2 surface charge from positive to negative after the heat treatment increased the adsorption of the methylene blue compound. Consequently, due to the blocking of active sites on the TiO2 surface, the adsorption process negatively affected the photocatalytic properties. All calcined photocatalysts obtained after modification via APTES showed a higher dye decomposition degree than the reference samples. For all 3 modifier concentrations tested, the best photoactivity was noted for nanomaterials calcined at 900 °C due to a higher specific surface area than materials calcined at 1000 °C, and a larger number of active sites available on the TiO2 surface compared with samples annealed at 800 °C. It was found that the optimum concentration for TiO2 modification, at which the highest dye decomposition degree was noted, was 500 mM.
Collapse
|
10
|
A Facile One Step Synthesis of MoS2/g-C3N4 Photocatalyst with Enhanced Visible Light Photocatalytic Hydrogen Production. Catal Letters 2021. [DOI: 10.1007/s10562-021-03689-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Wang C, Yang G, Shi W, Matras-Postolek K, Yang P. Construction of 2D/2D MoS 2/g-C 3N 4 Heterostructures for Photoreduction of Cr (VI). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6337-6346. [PMID: 33977717 DOI: 10.1021/acs.langmuir.1c00929] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2D/2D MoS2/g-C3N4 (MCN) surface heterostructures were created by second thermal polymerization of bulk g-C3N4 and the reaction of thiourea and MoO3 at 670 °C. MoS2 networks grew vertically along the (002) facet on superior thin g-C3N4 nanosheets. The layered heterostructures drastically improved the Cr(VI) removal ability. In the dark case, 27% of Cr(VI) was removed within 45 min. The result indicates that the adsorption of Cr(VI) was a chemical adsorption process involving the sharing and transfer of electrons. The equilibrium data indicate that the adsorbent was covered with a monolayer adsorbate, which conformed to the Langmuir isotherm model (R2 = 0.9618). In addition, MCN nanocomposites could convert Cr(VI) into non-toxic Cr(III) by photoreduction under visible light irradiation. With an optimized composition, 100% of Cr(VI) was removed within 30 min, which was ∼10 times quicker compared with Cr(VI) removal under dark conditions. Because g-C3N4 nanosheets (sample CN670) with higher photocurrent density revealed the lowest photoreduction Cr(VI) ability, adsorption plays an important role in Cr(VI) removal. For MoS2/g-C3N4 nanocomposites used in Cr(VI) removal, adsorption and photoreduction were incorporated together to get excellent performance.
Collapse
Affiliation(s)
- Chuanjie Wang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Guanglei Yang
- Winbond Construction Group Company Ltd., Qingzhou 262500, PR China
| | - Wenbin Shi
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Katarzyna Matras-Postolek
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 St., 31-155 Krakow, Poland
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
12
|
Humayun M, Ullah H, Tahir AA, Bin Mohd Yusoff AR, Mat Teridi MA, Nazeeruddin MK, Luo W. An Overview of the Recent Progress in Polymeric Carbon Nitride Based Photocatalysis. CHEM REC 2021; 21:1811-1844. [PMID: 33887089 DOI: 10.1002/tcr.202100067] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023]
Abstract
Recently, polymeric carbon nitride (g-C3 N4 ) as a proficient photo-catalyst has been effectively employed in photocatalysis for energy conversion, storage, and pollutants degradation due to its low cost, robustness, and environmentally friendly nature. The critical review summarized the recent development, fundamentals, nanostructures design, advantages, and challenges of g-C3 N4 (CN), as potential future photoactive material. The review also discusses the latest information on the improvement of CN-based heterojunctions including Type-II, Z-scheme, metal/CN Schottky junctions, noble metal@CN, graphene@CN, carbon nanotubes (CNTs)@CN, metal-organic frameworks (MOFs)/CN, layered double hydroxides (LDH)/CN heterojunctions and CN-based heterostructures for H2 production from H2 O, CO2 conversion and pollutants degradation in detail. The optical absorption, electronic behavior, charge separation and transfer, and bandgap alignment of CN-based heterojunctions are discussed elaborately. The correlations between CN-based heterostructures and photocatalytic activities are described excessively. Besides, the prospects of CN-based heterostructures for energy production, storage, and pollutants degradation are discussed.
Collapse
Affiliation(s)
- Muhammad Humayun
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, PR, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR, China
| | - Habib Ullah
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, Cornwall, United Kingdom
| | - Asif Ali Tahir
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, Cornwall, United Kingdom
| | - Abd Rashid Bin Mohd Yusoff
- Department of Physics, Swansea University, Vivian Tower, Singleton Park, SA2 8PP, Swansea, United Kingdom
| | - Mohd Asri Mat Teridi
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Mohammad Khaja Nazeeruddin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951, Sion, Switzerland
| | - Wei Luo
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, PR, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR, China
| |
Collapse
|
13
|
|
14
|
Xavier MM, Mohanapriya S, Mathew R, Adarsh NN, Nair PR, Mathew S. Fabrication of ternary composites with polymeric carbon nitride/MoS 2/reduced graphene oxide ternary hybrid aerogel as high-performance electrode materials for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj02960f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Presenting a remarkable ternary hybrid aerogel, as an excellent electrode material with a specific capacitance of 467 Fg−1 and capacitance retention upto 80.4% even after 2000 cycles, demonstrating good stability and improved cyclic performance.
Collapse
Affiliation(s)
- Marilyn Mary Xavier
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - S. Mohanapriya
- CSIR-Central Electro Chemical Research Institute, College Road, Karaikudi, Tamil Nadu, 630003, India
| | - Reshma Mathew
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Nayarassery N. Adarsh
- Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, New York, 13699, USA
| | - P. Radhakrishnan Nair
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Suresh Mathew
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| |
Collapse
|
15
|
Das B, Devi M, Hassan Barbhuiya M, Sankar Dhar S. Sodium and Sulfur Co‐Doped Graphitic Carbon Nitride: A Novel and Effective Visible Light Driven Photocatalyst with Tunable Bandgap for Degradation of Eosin Yellow. ChemistrySelect 2020. [DOI: 10.1002/slct.202003276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bishal Das
- Department of Chemistry National Institute of Technology, Silchar Silchar 788010 Assam India
| | - Meghali Devi
- Department of Chemistry National Institute of Technology, Silchar Silchar 788010 Assam India
| | - Monjur Hassan Barbhuiya
- Department of Chemistry National Institute of Technology, Silchar Silchar 788010 Assam India
| | - Siddhartha Sankar Dhar
- Department of Chemistry National Institute of Technology, Silchar Silchar 788010 Assam India
| |
Collapse
|
16
|
Photocatalytic H2 Evolution, CO2 Reduction, and NOx Oxidation by Highly Exfoliated g-C3N4. Catalysts 2020. [DOI: 10.3390/catal10101147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
g-C3N4, with specific surface area up to 513 m2/g, was prepared via three successive thermal treatments at 550 °C in air with gradual precursor mass decrease. The obtained bulk and exfoliated (1ex, 2ex and 3ex) g-C3N4 were characterized and tested as photocatalysts for H2 production, CO2 reduction and NOx oxidation. The exfoliated samples demonstrated graphene-like morphology with detached (2ex) and sponge-like framework (3ex) of layers. The surface area increased drastically from 20 m2/g (bulk) to 513 m2/g (3ex). The band gap (Eg) increased gradually from 2.70 to 3.04 eV. Superoxide radicals (·O2−) were mainly formed under UV and visible light. In comparison to the bulk, the exfoliated g-C3N4 demonstrated significant increase in H2 evolution (~6 times), CO2 reduction (~3 times) and NOx oxidation (~4 times) under UV light. Despite the Eg widening, the photocatalytic performance of the exfoliated g-C3N4 under visible light was improved too. The results were related to the large surface area and low e−-h+ recombination. The highly exfoliated g-C3N4 demonstrated selectivity towards H2 evolution reactions.
Collapse
|
17
|
Alwin E, Nowicki W, Wojcieszak R, Zieliński M, Pietrowski M. Elucidating the structure of the graphitic carbon nitride nanomaterials via X-ray photoelectron spectroscopy and X-ray powder diffraction techniques. Dalton Trans 2020; 49:12805-12813. [PMID: 32959849 DOI: 10.1039/d0dt02325f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
By using the most popular method of thermal condensation of dicyandiamide in a semi-closed system, graphitic carbon nitrides (gCNs) were synthesized at 500, 550, and 600 °C. The resulting materials were comprehensively analyzed via X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD)techniques. We show that the use of routine analytical methods provides an insight into the structure of the carbon nitride materials. The analysis of geometric linear structures and fully condensed structure of polymeric carbon nitrides was performed and the ranges within which the contents of different nitrogen species (pyridine, amine, imine and quaternary nitrogen) can change were determined. This analysis, in combination with quantitative XPS studies, permits to state that the carbon nitride structure prepared by the thermal condensation of dicyandiamide is closer to the structure in which poly(aminoimino)heptazine subunits are linked into chains rather than the structure involving fully-condensed polyheptazine network. The XRD analysis proved that the 3D crystal structure of carbon nitride is described more correctly by the orthorhombic cell and space group P21212 applied to condensed chains of poly(aminoimino)heptazine (melon) and not by the hexagonal cell with the space group P6m2.
Collapse
Affiliation(s)
- Emilia Alwin
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. and Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Waldemar Nowicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Michał Zieliński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Mariusz Pietrowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
18
|
Tian W, Sun H, Duan X, Zhang H, Ren Y, Wang S. Biomass-derived functional porous carbons for adsorption and catalytic degradation of binary micropollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121881. [PMID: 31852591 DOI: 10.1016/j.jhazmat.2019.121881] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The biomass, bottlebrush flower, is exploited for the preparation of functionalized porous carbons by one-pot thermal activation using NaHCO3 and dicyandiamide. An intensified cross-linking effect among the precursors boosts pore (especially mesopore) formation in the pyrolysis process, producing N-doped porous carbons (NPCs) with a large specific surface area (SSA, up to 2025 m2 g-1). The biomass-derived carbon samples turn out to be highly effective in adsorption, and catalytic activation of peroxymonosulfate for degradation of aqueous phenol and p-hydroxybenzoic acid (HBA) in single and binary systems. The effects of N content, porous structure, and trace Ni species on the adsorptive and catalytic behavior of carbon are investigated. It is found that the porous structure plays a more critical role in adsorption than surface N functionality, while the contributions of various reactive species for phenol and HBA degradation are different.
Collapse
Affiliation(s)
- Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Yongxiang Ren
- Key Laboratory of Northwestern Water Resource and Environment Ecology of Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
19
|
Barman S, Basu S. Complete removal of endocrine disrupting compound and toxic dye by visible light active porous g-C 3N 4/H-ZSM-5 nanocomposite. CHEMOSPHERE 2020; 241:124981. [PMID: 31606579 DOI: 10.1016/j.chemosphere.2019.124981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 05/06/2023]
Abstract
Photocatalytic degradation of toxic pollutants is an efficient technique to completely remove the toxic pollutants from water bodies. In the present investigation, photocatalytic degradation of pollutants was studied over porous g-C3N4/H-ZSM-5 nanocomposite under visible light irradiation. The composite g-C3N4/H-ZSM-5 was synthesized by mixing an aqueous solution of H-ZSM-5 zeolite (increases surface area and provides active sites for degradation) with melamine (precursor of g-C3N4) for 10-12 h followed by calcinations at 550 °C. The photocatalyst was characterized by XRD, BET, HRTEM, FESEM, EDS and elemental mapping analysis. These techniques confirmed that, g-C3N4/H-ZSM-5 composite have layered and porous structure with uniform distribution of g-C3N4 on H-ZSM-5 surface. The BET N2 adsorption-desorption analysis verified that the catalyst has high surface area (∼175 m2/g) having mesopores and micropores. The prepared catalyst was then used for the photodegradation of a model dye, Methylene Blue (MB) and an endocrine disrupting compound, Fipronil (FIP). Effects of various parameters such as pH, catalyst dose and scavengers were also studied. The % photocatalytic degradation of MB and FIP were around ∼92% and ∼84% with a high rate constants of 0.00997 and 0.00875 min-1, respectively. From the scavenger study, OH (hydroxyl radical) and radical was found to be the major reactive species for MB and FIP degradation. From these studies it is revealed that, the catalyst is visible active, easy to prepare and an efficient photocatalyst for toxic pollutant degradation.
Collapse
Affiliation(s)
- Sanghamitra Barman
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
| |
Collapse
|
20
|
Truong DH, Vo V, Van Gerven T, Leblebici ME. A Facile Method for the Synthesis of a MoS
2
/g‐C
3
N
4
Photocatalyst. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Duy Huong Truong
- Quy Nhon UniversityDepartment of Chemistry 170 An Duong Vuong Quy Nhon city Binh Dinh Province Vietnam
- KU LeuvenProcess Engineering for Sustainable Systems (ProcESS)Department of Chemical Engineering Celestijnenlaan 200F, Box 2424 3000 Leuven Flanders Belgium
| | - Vien Vo
- Quy Nhon UniversityDepartment of Chemistry 170 An Duong Vuong Quy Nhon city Binh Dinh Province Vietnam
| | - Tom Van Gerven
- KU LeuvenProcess Engineering for Sustainable Systems (ProcESS)Department of Chemical Engineering Celestijnenlaan 200F, Box 2424 3000 Leuven Flanders Belgium
| | - Mumin Enis Leblebici
- KU LeuvenFaculty of Industrial Engineering Lab4U, Agoralaan Building B, Box 8 3590 Diepenbeek Flanders Belgium
| |
Collapse
|
21
|
Zeng Y, Guo N, Xu X, Yu Y, Wang Q, Wang N, Han X, Yu H. Degradation of bisphenol a using peroxymonosulfate activated by WO 3@MoS 2/Ag hollow nanotubes photocatalyst. CHEMOSPHERE 2019; 227:589-597. [PMID: 31009865 DOI: 10.1016/j.chemosphere.2019.04.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/25/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
WO3@MoS2/Ag (HW@MA) hollow tubes were successfully engineered to photodegrade bisphenol A (BPA) combined with peroxymonosulfate (PMS) for the first time. XRD, XPS, TEM and SEM were conducted. The HW@MA tubes present excellent photocatalytic performance on the removal of BPA. The intermediate products of BPA were investigated by GC-MS analysis and the degradation pathway was proposed. To explore the transferred mechanism of photoproduced carriers, the electron paramagnetic resonance (EPR) technique was carried out. The results revealed that the superoxide radical (O2-), hydroxyl radical (OH), sulfate radical (SO4-) were the main active radicals. Moreover, the formed schottky junctions enhanced the separation efficiency of photoinduced electron-hole pairs. Besides, the effect of the photocatalysts' dosage, PMS concentration, pH of the initial solution and co-existing anions on the BPA degradation were investigated.
Collapse
Affiliation(s)
- Ying Zeng
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Na Guo
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun, 130102, China
| | - Xingjian Xu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun, 130102, China; Hinggan League Academy of Agricultural and Animal Husbandry, Ulanhot, Inner Mongolia, 137400, China
| | - Yong Yu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun, 130102, China
| | - Quanying Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun, 130102, China
| | - Na Wang
- Horqin Right-wing Banner Agriculture and Animal Husbandry and Science and Technology Bureau of Agricultural Technology Extension Center, Ulanhot, Inner Mongolia, 137400, China
| | - Xuerong Han
- Changchun University of Science and Technology, Changchun, 130022, China.
| | - Hongwen Yu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun, 130102, China.
| |
Collapse
|
22
|
Wang Q, Chen C, Zhu S, Ni X, Li Z. Acetylene black quantum dots as a bridge for few-layer g-C3N4/MoS2 nanosheet architecture: 0D–2D heterojunction as an efficient visible-light-driven photocatalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03876-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Gao H, Liu Y, Wang L, Zhu J, Gao S, Xia X. Synthesis of a reticular porous MoS2/g-C3N4 heterojunction with enhanced visible light efficiency in photocatalytic degradation of RhB. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03815-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Bhoi YP, Majhi D, Das K, Mishra BG. Visible‐Light‐Assisted Photocatalytic Degradation of Phenolic Compounds Using Bi
2
S
3
/Bi
2
W
2
O
9
Heterostructure Materials as Photocatalyst. ChemistrySelect 2019. [DOI: 10.1002/slct.201900450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yagna P. Bhoi
- Department of ChemistryNational Institute of Technology, Rourkela- 769008 Odisha India
| | - Dibyananda Majhi
- Department of ChemistryNational Institute of Technology, Rourkela- 769008 Odisha India
| | - Krishnendu Das
- Department of ChemistryNational Institute of Technology, Rourkela- 769008 Odisha India
| | - Braja G. Mishra
- Department of ChemistryNational Institute of Technology, Rourkela- 769008 Odisha India
| |
Collapse
|
25
|
Cao Y, Jing X, Chen Y, Kang W, Wang S, Wang W. Template-free synthesis of salmon pink tube-shaped structure carbon nitride with enhanced visible light photocatalytic activity. RSC Adv 2019; 9:3396-3402. [PMID: 35518949 PMCID: PMC9060291 DOI: 10.1039/c8ra09950b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 11/23/2022] Open
Abstract
Designing a highly active and stable photocatalyst to directly solve environmental pollution is desirable for solar energy conversion. Herein, an effective strategy, hydrothermal-calcination, for synthesizing extremely active carbon nitride (salmon pink) from a low-cost precursor melamine, is reported. The salmon pink carbon nitride with tube-shaped structure significantly enhanced response to visible light, improved efficiency of charge separation and remarkably enhanced efficiency of methyl orange (MO) degradation than bulk g-C3N4 (light orange). The M-10-200-24-600 composite possessed the most wonderful ability towards MO degradation irradiated by visible light, which could achieve a highest degradation efficiency of 84% within 120 min. Our findings may provide a promising and facile approach to highly efficient photocatalysis for solar-energy conversion. Designing a highly active and stable photocatalyst to directly solve environmental pollution is desirable for solar energy conversion.![]()
Collapse
Affiliation(s)
- Youzhi Cao
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Xinbo Jing
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Yajuan Chen
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Wenjie Kang
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Shufen Wang
- College of Sciences
- Shihezi University
- Shihezi 832003
- China
| | - Wei Wang
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| |
Collapse
|
26
|
Chen T, Yin D, Zhao F, Kyu KK, Liu B, Chen D, Huang K, Deng L, Li L. Fabrication of 2D heterojunction photocatalyst Co-g-C3N4/MoS2 with enhanced solar-light-driven photocatalytic activity. NEW J CHEM 2019. [DOI: 10.1039/c8nj04849e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co-Doping and formation of a 2D heterojunction with MoS2 can significantly boost the photocatalytic activity of g-C3N4.
Collapse
Affiliation(s)
- Tao Chen
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Dongguang Yin
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Feifei Zhao
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Kyu Khaing Kyu
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Bingqi Liu
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Dongwei Chen
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Kexian Huang
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - LinLin Deng
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Luqiu Li
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| |
Collapse
|
27
|
Shi L, Ding W, Yang S, He Z, Liu S. Rationally designed MoS 2/protonated g-C 3N 4 nanosheet composites as photocatalysts with an excellent synergistic effect toward photocatalytic degradation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:431-441. [PMID: 29367154 DOI: 10.1016/j.jhazmat.2018.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
The positively charged ultrathin g-C3N4 nanosheets are prepared by ultrasonic-assisted exfoliation of the protonated g-C3N4. Compared with the protonated g-C3N4 and exfoliated g-C3N4, the positively charged ultrathin g-C3N4 has abundant functional groups as well as desired dispersibility in deionized water, thus it could serve as a basic building block for designing related heterojunction composites. To take a full advantage of these features, the positively charged ultrathin g-C3N4/MoS2 composites are fabricated through a simple electrostatic adsorption and self-assembly process followed by a hydrothermal method. By loading an appropriate amount of MoS2 on the ultrathin g-C3N4 nanosheets, the as-fabricated composites exhibit considerable improvement on the photocatalytic activities toward the degradation of typical organic pollutants (i.e., methyl orange and phenol) under visible light irradiation. The composite containing 2 wt% MoS2 shows the highest efficiency of about 96.5% for the methyl orange degradation, which is about 3.5 times and 8 times compared to those of the positively charged ultrathin g-C3N4 and bulk g-C3N4, respectively. The superb photocatalytic performance benefits from the unique advantages, including richly available reaction sites, aligned energy levels between g-C3N4 and the MoS2, and efficient electron transfer. This work opens new possibilities for the rational design and construction of the g-C3N4 based composites as highly efficient and stable visible-light driven photocatalysts for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Lang Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P.R. China
| | - Wang Ding
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P.R. China
| | - Shuping Yang
- School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410083, P.R. China
| | - Zhen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P.R. China.
| | - Suqin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P.R. China.
| |
Collapse
|
28
|
Chen D, Wu S, Fang J, Lu S, Zhou G, Feng W, Yang F, Chen Y, Fang Z. A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Sadhanala HK, Senapati S, Harika KV, Nanda KK, Gedanken A. Green synthesis of MoS2 nanoflowers for efficient degradation of methylene blue and crystal violet dyes under natural sun light conditions. NEW J CHEM 2018. [DOI: 10.1039/c8nj01731j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrothermally synthesized MoS2 NFs have been employed as an efficient photocatalyst for the degradation of MB and CV dyes under sunlight.
Collapse
Affiliation(s)
- H. K. Sadhanala
- Materials Research Centre
- Indian Institute of Science
- Bangalore-560012
- India
- Department of Chemistry
| | - Subrata Senapati
- Materials Research Centre
- Indian Institute of Science
- Bangalore-560012
- India
| | | | - Karuna Kar Nanda
- Materials Research Centre
- Indian Institute of Science
- Bangalore-560012
- India
| | | |
Collapse
|
30
|
Zeng Y, Guo N, Song Y, Zhao Y, Li H, Xu X, Qiu J, Yu H. Fabrication of Z-scheme magnetic MoS 2/CoFe 2O 4 nanocomposites with highly efficient photocatalytic activity. J Colloid Interface Sci 2017; 514:664-674. [PMID: 29310096 DOI: 10.1016/j.jcis.2017.12.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
Abstract
MoS2 thin nanosheets decorated with CoFe2O4 nanoparticles have been successfully synthesized via a simple hydrothermal method. The nanocomposites are characterized by XRD, TEM, HRTEM, BET, XPS, UV-Vis DRS, PL and magnetic property analysis. The Z-scheme mechanism at the interface of MoS2 and CoFe2O4 is formed. When the mass ratio of MoS2 and CoFe2O4 is 1:3, the MoS2/CoFe2O4 nanocomposites present excellent photocatalytic performance. The degradation rate of rhodamine B (RhB) and congo red (CR) is 93.80% and 94.43% in 90 and 50 min, respectively, under visible light irradiation. The highly photocatalytic activity could be mainly ascribed to the formed Z-scheme mechanism which facilitates the separation of photoinduced electron-hole pairs. Besides, the MoS2 thin nanosheets not only provide the most active sites for photocatalytic reactions, but also act as the backing material for CoFe2O4 nanoparticles to effectively disperse and avoid the magnetic aggregation. Moreover, the MoS2/CoFe2O4 nanocomposites present a good recyclability and the degradation rate of RhB and CR is still beyond 82% after seven runs. In addition, the nanocomposites can be easily separated by an external magnet.
Collapse
Affiliation(s)
- Ying Zeng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Na Guo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yunjia Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Zhao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Haiyan Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xingjian Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jianding Qiu
- Department of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
31
|
Fu Y, Li Z, Liu Q, Yang X, Tang H. Construction of carbon nitride and MoS 2 quantum dot 2D/0D hybrid photocatalyst: Direct Z-scheme mechanism for improved photocatalytic activity. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62911-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Fageria P, Sudharshan K, Nazir R, Basu M, Pande S. Decoration of MoS2 on g-C3N4 surface for efficient hydrogen evolution reaction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.184] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Cao Y, Gao Q, Li Q, Jing X, Wang S, Wang W. Synthesis of 3D porous MoS2/g-C3N4 heterojunction as a high efficiency photocatalyst for boosting H2 evolution activity. RSC Adv 2017. [DOI: 10.1039/c7ra06774g] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel strategy was applied for the preparation of MoS2/graphitic carbon nitride (g-C3N4) with porous morphology.
Collapse
Affiliation(s)
- Youzhi Cao
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Qin Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Material Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Qiao Li
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Xinbo Jing
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Shufen Wang
- College of Sciences
- Shihezi University
- Shihezi 832003
- China
| | - Wei Wang
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| |
Collapse
|
34
|
Meng J, Pei J, He Z, Wu S, Lin Q, Wei X, Li J, Zhang Z. Facile synthesis of g-C3N4 nanosheets loaded with WO3 nanoparticles with enhanced photocatalytic performance under visible light irradiation. RSC Adv 2017. [DOI: 10.1039/c7ra02297b] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Possible synthesis and degradation mechanism for photocatalysts under visible light irradiation.
Collapse
Affiliation(s)
- Jie Meng
- Center of Electron Microscopy
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
| | - Jingyuan Pei
- Center of Electron Microscopy
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
| | - Zefang He
- Center of Electron Microscopy
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
| | - Shiyan Wu
- Center of Electron Microscopy
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
| | - Qingyun Lin
- Center of Electron Microscopy
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
| | - Xiao Wei
- Center of Electron Microscopy
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
| | - Jixue Li
- Center of Electron Microscopy
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
| | - Ze Zhang
- Center of Electron Microscopy
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
| |
Collapse
|