1
|
Demessie AA, Park Y, Singh P, Moses AS, Korzun T, Sabei FY, Albarqi HA, Campos L, Wyatt CR, Farsad K, Dhagat P, Sun C, Taratula OR, Taratula O. An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia. SMALL METHODS 2022; 6:e2200916. [PMID: 36319445 PMCID: PMC9772135 DOI: 10.1002/smtd.202200916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Due to the limited heating efficiency of available magnetic nanoparticles, it is difficult to achieve therapeutic temperatures above 44 °C in relatively inaccessible tumors during magnetic hyperthermia following systemic administration of nanoparticles at clinical dosage (≤10 mg kg-1 ). To address this, a method for the preparation of magnetic nanoparticles with ultrahigh heating capacity in the presence of an alternating magnetic field (AMF) is presented. The low nitrogen flow rate of 10 mL min-1 during the thermal decomposition reaction results in cobalt-doped nanoparticles with a magnetite (Fe3 O4 ) core and a maghemite (γ-Fe2 O3 ) shell that exhibit the highest intrinsic loss power reported to date of 47.5 nH m2 kg-1 . The heating efficiency of these nanoparticles correlates positively with increasing shell thickness, which can be controlled by the flow rate of nitrogen. Intravenous injection of nanoparticles at a low dose of 4 mg kg-1 elevates intratumoral temperatures to 50 °C in mice-bearing subcutaneous and metastatic cancer grafts during exposure to AMF. This approach can also be applied to the synthesis of other metal-doped nanoparticles with core-shell structures. Consequently, this method can potentially be used for the development of novel nanoparticles with high heating performance, further advancing systemic magnetic hyperthermia for cancer treatment.
Collapse
Affiliation(s)
- Ananiya A Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Fahad Y Sabei
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 88723, Kingdom of Saudi Arabia
| | - Hassan A Albarqi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 55461, Kingdom of Saudi Arabia
| | - Leonardo Campos
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR, 97239, USA
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR, 97239, USA
| | - Khashayar Farsad
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Pallavi Dhagat
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| |
Collapse
|
2
|
Chen KL, Tsai PH, Lin CW, Chen JM, Lin YJ, Kumar P, Jeng CC, Wu CH, Wang LM, Tsao HM. Sensitivity enhancement of magneto-optical Faraday effect immunoassay method based on biofunctionalized γ-Fe 2O 3@Au core-shell magneto-plasmonic nanoparticles for the blood detection of Alzheimer's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102601. [PMID: 36089233 DOI: 10.1016/j.nano.2022.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In this work, we conducted a proof-of-concept experiment based on biofunctionalized magneto-plasmonic nanoparticles (MPNs) and magneto-optical Faraday effect for in vitro Alzheimer's disease (AD) assay. The biofunctionalized γ-Fe2O3@Au MPNs of which the surfaces are modified with the antibody of Tau protein (anti-τ). As anti-τ reacts with Tau protein, biofunctionalized MPNs aggregate to form magnetic clusters which will hence induce the change of the reagent's Faraday rotation angle. The result showed that the γ-Fe2O3@Au core-shell MPNs can enhance the Faraday rotation with respect to the raw γ-Fe2O3 nanoparticles. Because of their magneto-optical enhancement effect, biofunctionalized γ-Fe2O3@Au MPNs effectively improve the detection sensitivity. The detection limit of Tau protein as low as 9 pg/mL (9 ppt) was achieved. Furthermore, the measurements of the clinical samples from AD patients agreed with the CDR evaluated by the neurologist. The results suggest that our method has the potential for disease assay applications.
Collapse
Affiliation(s)
- Kuen-Lin Chen
- Institute of Nanoscience, National Chung Hsing University, Taichung, Taiwan; Department of Physics, National Chung Hsing University, Taichung, Taiwan.
| | - Ping-Huang Tsai
- Department of Neurology, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan.; Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Wei Lin
- Graduate Institute of Applied Physics, National Taiwan University, Taipei, Taiwan
| | - Jian-Ming Chen
- Institute of Nanoscience, National Chung Hsing University, Taichung, Taiwan
| | - You-Jun Lin
- Institute of Nanoscience, National Chung Hsing University, Taichung, Taiwan
| | - Pradeep Kumar
- Department of Physics, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chung Jeng
- Institute of Nanoscience, National Chung Hsing University, Taichung, Taiwan; Department of Physics, National Chung Hsing University, Taichung, Taiwan
| | - Chiu-Hsien Wu
- Institute of Nanoscience, National Chung Hsing University, Taichung, Taiwan; Department of Physics, National Chung Hsing University, Taichung, Taiwan
| | - Li-Min Wang
- Graduate Institute of Applied Physics, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Ming Tsao
- Division of Cardiology, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| |
Collapse
|
3
|
Siqueira ERL, Pinheiro WO, Aquino VRR, Coelho BCP, Bakuzis AF, Azevedo RB, Sousa MH, Morais PC. Engineering Gold Shelled Nanomagnets for Pre-Setting the Operating Temperature for Magnetic Hyperthermia. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2760. [PMID: 36014626 PMCID: PMC9413094 DOI: 10.3390/nano12162760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the fabrication of spherical gold shelled maghemite nanoparticles for use in magnetic hyperthermia (MHT) assays. A maghemite core (14 ± 3 nm) was used to fabricate two samples with different gold thicknesses, which presented gold (g)/maghemite (m) content ratios of 0.0376 and 0.0752. The samples were tested in MHT assays (temperature versus time) with varying frequencies (100-650 kHz) and field amplitudes (9-25 mT). The asymptotic temperatures (T∞) of the aqueous suspensions (40 mg Fe/mL) were found to be in the range of 59-77 °C (naked maghemite), 44-58 °C (g/m=0.0376) and 33-51 °C (g/m=0.0752). The MHT data revealed that T∞ could be successful controlled using the gold thickness and cover the range for cell apoptosis, thereby providing a new strategy for the safe use of MHT in practice. The highest SAR (specific absorption rate) value was achieved (75 kW/kg) using the thinner gold shell layer (334 kHz, 17 mT) and was roughly twenty times bigger than the best SAR value that has been reported for similar structures. Moreover, the time that was required to achieve T∞ could be modeled by changing the thermal conductivity of the shell layer and/or the shape/size of the structure. The MHT assays were pioneeringly modeled using a derived equation that was analytically identical to the Box-Lucas method (which was reported as phenomenological).
Collapse
Affiliation(s)
- Elis Regina Lima Siqueira
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília DF 70910-900, Brazil
| | - Willie Oliveira Pinheiro
- Green Nanotechnology Group, Faculty of Ceilândia, University of Brasília, Brasília DF 72220-900, Brazil
- Post-Graduation Program in Sciences and Health Technologies, Faculty of Ceilândia, University of Brasília, Brasília DF 72220-275, Brazil
| | - Victor Raul Romero Aquino
- Institute of Physics, Federal University of Goiás, Goiânia GO 74690-631, Brazil
- Institute of Physics, University of Brasília, Brasília DF 70910-900, Brazil
| | | | - Andris Figueiroa Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia GO 74690-631, Brazil
- CNanoMed, Federal University of Goiás, Goiânia GO 74690-631, Brazil
| | - Ricardo Bentes Azevedo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília DF 70910-900, Brazil
| | - Marcelo Henrique Sousa
- Green Nanotechnology Group, Faculty of Ceilândia, University of Brasília, Brasília DF 72220-900, Brazil
- Post-Graduation Program in Sciences and Health Technologies, Faculty of Ceilândia, University of Brasília, Brasília DF 72220-275, Brazil
| | - Paulo Cesar Morais
- Institute of Physics, University of Brasília, Brasília DF 70910-900, Brazil
- Catholic University of Brasília, Brasília DF 70790-160, Brazil
| |
Collapse
|
4
|
Liang F. Magnetic Hybrid Materials of Gold Nanoparticles as Anti-Cancer Agents. Anticancer Agents Med Chem 2022; 22:2504-2506. [PMID: 35088679 DOI: 10.2174/1871520622666220128101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Feng Liang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan
| |
Collapse
|
5
|
Kheradmand E, Poursalehi R, Delavari H. Optical and magnetic properties of iron-enriched Fe/FexOy@Au magnetoplasmonic nanostructures. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01246-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Aggarwal A, Samaroo D, Jovanovic IR, Singh S, Tuz MP, Mackiewicz MR. Porphyrinoid-based photosensitizers for diagnostic and therapeutic applications: An update. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porphyrin-based molecules are actively studied as dual function theranostics: fluorescence-based imaging for diagnostics and fluorescence-guided therapeutic treatment of cancers. The intrinsic fluorescent and photodynamic properties of the bimodal molecules allows for these theranostic approaches. Several porphyrinoids bearing both hydrophilic and/or hydrophobic units at their periphery have been developed for the aforementioned applications, but better tumor selectivity and high efficacy to destroy tumor cells is always a key setback for their use. Another issue related to their effective clinical use is that, most of these chromophores form aggregates under physiological conditions. Nanomaterials that are known to possess incredible properties that cannot be achieved from their bulk systems can serve as carriers for these chromophores. Porphyrinoids, when conjugated with nanomaterials, can be enabled to perform as multifunctional nanomedicine devices. The integrated properties of these porphyrinoid-nanomaterial conjugated systems make them useful for selective drug delivery, theranostic capabilities, and multimodal bioimaging. This review highlights the use of porphyrins, chlorins, bacteriochlorins, phthalocyanines and naphthalocyanines as well as their multifunctional nanodevices in various biomedical theranostic platforms.
Collapse
Affiliation(s)
- Amit Aggarwal
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Diana Samaroo
- New York City College of Technology, Department of Chemistry, 285 Jay Street, Brooklyn, NY 11201, USA
- Graduate Center, 365 5th Ave, New York, NY 10016, USA
| | | | - Sunaina Singh
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Michelle Paola Tuz
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | | |
Collapse
|
7
|
Costa F, Jardim KV, Palomec-Garfias AF, Cáceres-Vélez PR, Chaker JA, Medeiros AMM, Moya SE, Sousa MH. Highly Magnetizable Crosslinked Chloromethylated Polystyrene-Based Nanocomposite Beads for Selective Molecular Separation of 4-Aminobenzoic Acid. ACS OMEGA 2019; 4:5640-5649. [PMID: 31459718 PMCID: PMC6648915 DOI: 10.1021/acsomega.9b00142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 06/10/2023]
Abstract
In this work, we describe the preparation and characterization of highly magnetizable chloromethylated polystyrene-based nanocomposite beads. For synthesis optimization, acid-resistant core-shelled maghemite (γ-Fe2O3) nanoparticles are coated with sodium oleate and directly incorporated into the organic medium during a suspension polymerization process. A crosslinking agent, ethylene glycol dimethacrylate, is used for copolymerization with 4-vinylbenzyl chloride to increase the resistance of the microbeads against leaching. X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and optical microscopy are used for bead characterization. The beads form a magnetic composite consisting of ∼500 nm-sized crosslinked polymeric microspheres, embedding ∼8 nm γ-Fe2O3 nanoparticles. This nanocomposite shows large room temperature magnetization (∼24 emu/g) due to the high content of maghemite (∼45 wt %) and resistance against leaching even in acidic media. Moreover, the presence of superficial chloromethyl groups is probed by Fourier transform infrared and X-ray photoelectron spectroscopy. The nanocomposite beads displaying chloromethyl groups can be used to selectively remove aminated compounds that are adsorbed on the beads, as is shown here for the molecular separation of 4-aminobenzoic acid from a mixture with benzoic acid. The high magnetization of the composite beads makes them suitable for in situ molecular separations in environmental and biological applications.
Collapse
Affiliation(s)
- Fábio
T. Costa
- Green
Nanotechnology Group, Universidade de Brasília, Brasília DF 72220-900, Brazil
| | - Katiúscia V. Jardim
- Green
Nanotechnology Group, Universidade de Brasília, Brasília DF 72220-900, Brazil
| | | | | | - Juliano A. Chaker
- Green
Nanotechnology Group, Universidade de Brasília, Brasília DF 72220-900, Brazil
| | - Anderson M. M.
S. Medeiros
- Laboratoire
de Chimie des Polymères Organiques, Universitè de Bordeaux, UMR5629, CNRS—Bordeaux INP—ENSCBP, 16 Avenue Pey-Berland, 33607 Pessac, Cedex, France
| | - Sergio E. Moya
- Soft
Matter Nanotechnology Laboratory, CIC biomaGUNE, San Sebastián, Guip 20009, Spain
| | - Marcelo H. Sousa
- Green
Nanotechnology Group, Universidade de Brasília, Brasília DF 72220-900, Brazil
| |
Collapse
|
8
|
Palomec-Garfias AF, Jardim KV, Sousa MH, Márquez-Beltrán C. Influence of polyelectrolyte chains on surface charge and magnetization of iron oxide nanostructures. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Jagminas A, Mikalauskaitė A, Karabanovas V, Vaičiūnienė J. Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1734-1741. [PMID: 28904834 PMCID: PMC5588630 DOI: 10.3762/bjnano.8.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/02/2017] [Indexed: 05/06/2023]
Abstract
Biocompatible superparamagnetic iron oxide nanoparticles (NPs) through smart chemical functionalization of their surface with fluorescent species, therapeutic proteins, antibiotics, and aptamers offer remarkable potential for diagnosis and therapy of disease sites at their initial stage of growth. Such NPs can be obtained by the creation of proper linkers between magnetic NP and fluorescent or drug probes. One of these linkers is gold, because it is chemically stable, nontoxic and capable to link various biomolecules. In this study, we present a way for a simple and reliable decoration the surface of magnetic NPs with gold quantum dots (QDs) containing more than 13.5% of Au+. Emphasis is put on the synthesis of magnetic NPs by co-precipitation using the amino acid methionine as NP growth-stabilizing agent capable to later reduce and attach gold species. The surface of these NPs can be further conjugated with targeting and chemotherapy agents, such as cancer stem cell-related antibodies and the anticancer drug doxorubicin, for early detection and improved treatment. In order to verify our findings, high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), FTIR spectroscopy, inductively coupled plasma mass spectroscopy (ICP-MS), and X-ray photoelectron spectroscopy (XPS) of as-formed CoFe2O4 NPs before and after decoration with gold QDs were applied.
Collapse
Affiliation(s)
- Arūnas Jagminas
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT- 10222, Vilnius, Lithuania
| | - Agnė Mikalauskaitė
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT- 10222, Vilnius, Lithuania
| | | | - Jūrate Vaičiūnienė
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT- 10222, Vilnius, Lithuania
| |
Collapse
|