1
|
Liu HJ, Zhu MS, Zhang G, Sun R, Xu YJ, Ge JF. Viscosity probes towards different organelles with red emission based on an identical hemicyanine structure. Analyst 2023; 148:4463-4469. [PMID: 37565801 DOI: 10.1039/d3an00550j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A series of viscosity probes targeting different organelles were obtained using a single hemicyanine dye as the matrix structure. Specifically, probes 1a-d were obtained by introducing four amines (6-amino-2H-chromen-2-one, N-(2-aminoethyl)-4-methylbenzenesulfonamide, dodecan-1-amine and N,N diphenylbenzene-1,4-diamine) into the indole hemicyanine dye of the carboxylic acid with a D-π-A structure. Their maximum absorption wavelengths were in the range 570-586 nm and they had relatively large molar absorption coefficients, while their maximum emission wavelengths in the red light region were in the range 596-611 nm. Moreover, their fluorescence intensity in glycerol was 35-184 times higher than that in phosphate buffer solution (PBS). The lg(Fl) and lg η of probes 1a-d showed good linearity with high correlation coefficients according to the Förster-Hoffman equation. In addition, cell staining experiments demonstrated that 1a-c could target lysosomes, endoplasmic reticulum and mitochondria, respectively. They could also undergo viscosity-detectable changes in the corresponding organelles under the action of the corresponding ion carriers.
Collapse
Affiliation(s)
- Hong-Jiao Liu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Ming-Sen Zhu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Gang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Yu-Jie Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
2
|
Liu TZ, Wang S, Xu JR, Miao JY, Zhao BX, Lin ZM. FRET-based fluorescent probe with favorable water solubility for simultaneous detection of SO 2 derivatives and viscosity. Talanta 2023; 256:124302. [PMID: 36708620 DOI: 10.1016/j.talanta.2023.124302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
The intracellular viscosity is an important parameter of the microenvironment and SO2 is a vital gas signal molecule. At present, some dual-response fluorescence probes for simultaneous measurements of viscosity and SO2 derivatives (HSO3-/SO32-) possessed poor water solubility. In this work, we developed a water-soluble fluorescence probe CIJ (0.0864 g/100 mL of water at 20 °C) for simultaneous measurements of viscosity and SO2 derivatives. CIJ exhibited a sensitive fluorescence enhancement to environmental viscosity from 0.97 to 28.04 cP based on a twisted intramolecular charge transfer mechanism and was applied to effective measurement of viscosity in vitro and in vivo. CIJ could also respond to SO2 derivatives with a low detection limit (44 nM) and a fast response time (5 min) based on the nucleophilic addition reaction. Furthermore, CIJ was applied to monitor SO2 derivatives in ratiometric response manner in living cells.
Collapse
Affiliation(s)
- Tian-Zhen Liu
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, PR China
| | - Jia-Rui Xu
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Jun-Ying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, PR China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| | - Zhao-Min Lin
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, 250033, PR China.
| |
Collapse
|
3
|
Das S, Patra L, Pratim Das P, Ghoshal K, Gharami S, Walton JW, Bhattacharyya M, Mondal TK. A new ratiometric switch "two-way" detects hydrazine and hypochlorite via a "dye-release" mechanism with a PBMC bioimaging study. Phys Chem Chem Phys 2022; 24:20941-20952. [PMID: 36053209 DOI: 10.1039/d2cp02482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ratiometric fluorescent probe (E)-2-(benzo[d]thiazol-2-yl)-3-(8-methoxyquinolin-2-yl)acrylonitrile (HQCN) was synthesised by the perfect blending of quinoline and a 2-benzothiazoleacetonitrile unit. In a mixed aqueous solution, HQCN reacts with hydrazine (N2H4) to give a new product 2-(hydrazonomethyl)-8-methoxyquinoline along with the liberation of the 2-benzothiazoleacetonitrile moiety. In contrast, the reaction of hypochlorite ions (OCl-) with the probe gives 8-methoxyquinoline-2-carbaldehyde. In both cases, the chemodosimetric approaches of hydrazine and hypochlorite selectively occur at the olefinic carbon but give two different products with two different outputs, as observed from the fluorescence study exhibiting signals at 455 nm and 500 nm for hydrazine and hypochlorite, respectively. A UV-vis spectroscopy study also depicts a distinct change in the spectrum of HQCN in the presence of hydrazine and hypochlorite. The hydrazinolysis of HQCN exhibits a prominent chromogenic as well as ratiometric fluorescence change with a 165 nm left-shift in the fluorescence spectrum. Similarly, the probe in hand (HQCN) can selectively detect hypochlorite in a ratiometric manner with a shift of 120 nm, as observed from the fluorescence emission spectra. HQCN can detect hydrazine and OCl- as low as 2.25 × 10-8 M and 3.46 × 10-8 M, respectively, as evaluated from the fluorescence experiments again. The excited state behaviour of the probe HQCN and the chemodosimetric products with hydrazine and hypochlorite are studied by the nanosecond time-resolved fluorescence technique. Computational studies (DFT and TDDFT) with the probe and the hydrazine and hypochlorite products were also performed. The observations made in the fluorescence imaging studies with human blood cells manifest that HQCN can be employed to monitor hydrazine and OCl- in human peripheral blood mononuclear cells (PBMCs). It is indeed a rare case that the single probe HQCN is found to be successfully able to detect hydrazine and hypochlorite in PBMCs, with two different outputs.
Collapse
Affiliation(s)
- Sangita Das
- Department of Chemistry, Jadavpur University, Kolkata-700032, India. .,Department of Chemistry, Durham University, Durham, DH1 3LE, UK. .,KIST Europe Forschungsgesellschaft mbH, Campus E71, 66123 Saarbrücken, Germany
| | - Lakshman Patra
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Partha Pratim Das
- Center for Novel States of Complex Materials Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Kakali Ghoshal
- Department of Biochemistry, University of Calcutta, Kolkata-700019, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - James W Walton
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
4
|
Olla C, Porcu S, Secci F, Ricci PC, Carbonaro CM. Towards N-N-Doped Carbon Dots: A Combined Computational and Experimental Investigation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1468. [PMID: 35208012 PMCID: PMC8880414 DOI: 10.3390/ma15041468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023]
Abstract
The introduction of N doping atoms in the carbon network of Carbon Dots is known to increase their quantum yield and broaden the emission spectrum, depending on the kind of N bonding introduced. N doping is usually achieved by exploiting amine molecules in the synthesis. In this work, we studied the possibility of introducing a N-N bonding in the carbon network by means of hydrothermal synthesis of citric acid and hydrazine molecules, including hydrated hydrazine, di-methylhydrazine and phenylhydrazine. The experimental optical features show the typical fingerprints of Carbon Dots formation, such as nanometric size, excitation dependent emission, non-single exponential decay of photoluminescence and G and D vibrational bands in the Raman spectra. To explain the reported data, we performed a detailed computational investigation of the possible products of the synthesis, comparing the simulated absorbance spectra with the experimental optical excitation pattern. The computed Raman spectra corroborate the hypothesis of the formation of pyridinone derivatives, among which the formation of small polymeric chains allowed the broad excitation spectra to be experimentally observed.
Collapse
Affiliation(s)
- Chiara Olla
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy; (S.P.); (P.C.R.)
| | - Stefania Porcu
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy; (S.P.); (P.C.R.)
| | - Francesco Secci
- Department of Chemistry and Geological Science, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy;
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy; (S.P.); (P.C.R.)
| | - Carlo Maria Carbonaro
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy; (S.P.); (P.C.R.)
| |
Collapse
|
5
|
Yan H, Huo F, Yue Y, Chao J, Yin C. A practical pH-compatible fluorescent sensor for hydrazine in soil, water and living cells. Analyst 2020; 145:7380-7387. [PMID: 32930683 DOI: 10.1039/d0an01633k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The excellent water solubility of hydrazine (N2H4) allows it to easily invade the human body through the skin and respiratory tract, thereby damaging human organs and the central nervous system. To realize the monitoring of N2H4 effectively, first, coumarin was used to construct an inner alicyclic ring as the reaction site, extending the conjugation and strengthening the rigidity of the probe Co-Hy to improve its luminescence performance and enhance its ability to resist acids and alkalis. Second, we introduced a carboxyl group at the ortho position of the inner alicyclic ring to improve the water solubility of Co-Hy, and its strong electron pulling effect increased the activity of the reaction site. Spectroscopy experiments showed that Co-Hy featured excellent water solubility, high pH resistance (pH 4-11), excellent selectivity, fast analysis speed (within 5 minutes), and a low detection limit toward N2H4 (69 nM, 2.2 ppb). In addition, test-strip, spray, and cell-imaging experiments confirmed the outstanding application potential of Co-Hy for convenient N2H4 analysis in a variety of environments.
Collapse
Affiliation(s)
- Huming Yan
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | | | | | | | | |
Collapse
|
6
|
Liu Z, Yang Z, Chen S, Liu Y, Sheng L, Tian Z, Huang D, Xu H. A smart reaction-based fluorescence probe for ratio detection of hydrazine and its application in living cells. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104809] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Hou Y, Liu H, Li Z, Zhang H, Wei L, Yu M. One-step synthesis of mitochondrion-targeted fluorescent carbon dots and fluorescence detection of silver ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2835-2840. [PMID: 32930206 DOI: 10.1039/d0ay00622j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silver ions (Ag+) are the most representative harmful ions found in polluted water and widely used in many industries; excessive ingestion of Ag+ in the human body may result in interaction with different metabolites in the human body and in aquatic microorganisms, leading to many diseases. Therefore, there is a great desire to develop good fluorescent probes for Ag+. Herein, a kind of mitochondrion-targeted fluorescent carbon dot was developed. These carbon dots exhibit 29.5% fluorescence quantum yield in water, good photostability and thermal stability. The as-fabricated carbon dots can quickly detect Ag+ in 100% water solution with good selectivity and anti-interference ability. Further, the carbon dots have been successfully applied to monitor Ag+ in living cells via the dual-channel method.
Collapse
Affiliation(s)
- Yue Hou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hanxiao Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhanxian Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hongyan Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile, Nanofiber, Beijing Institute of Fashion Technology, Beijing, 100029, China.
| | - Liuhe Wei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Mingming Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Xu W, Li X, Han M, Zhou T, Yang Y, Li W. A new "turn-on" fluorescence probe based on hydrazine-triggered tandem reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117754. [PMID: 31759882 DOI: 10.1016/j.saa.2019.117754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Hydrazine is extremely harmful to the human body. The leakage of hydrazine is liable to cause potential safety hazards. Here, we reported a new fluorescence probe based on the tandem reaction. The hydrazine-triggered hydrazinolysis-cyclization resulted in the formation of the iminocoumarin. The fluorescence intensity at 522 nm of the probe increased after the reaction with hydrazine. There was a linear relationship between the fluorescence intensity and the concentration of hydrazine (0.14-120.00 μM). The LOD of the probe to N2H4 was 1.36 ppb. Notably, the probe could detect hydrazine in BT474 cells and tap water.
Collapse
Affiliation(s)
- Wenzhi Xu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, PR China.
| | - Xue Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, PR China
| | - Mengnan Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, PR China
| | - Tingting Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yutao Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, PR China
| | - Wei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
9
|
Li Y, Ban Y, Wang R, Wang Z, Li Z, Fang C, Yu M. FRET-based ratiometric fluorescent detection of arginine in mitochondrion with a hybrid nanoprobe. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Shin MC, Lee Y, Park SB, Kim E. Development of Azo-Based Turn-On Chemical Array System for Hydrazine Detection with Fluorescence Pattern Analysis. ACS OMEGA 2019; 4:14875-14885. [PMID: 31552327 PMCID: PMC6751537 DOI: 10.1021/acsomega.9b01487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
A facile turn-on chemical sensor array was developed for hydrazine detection by means of fluorescence pattern recognition. Taking advantage of the unique properties of the azo group, four different fluorogenic probes, Seoul-Fluor (SF)-Azo 01-04, were designed and prepared. SF-Azo 01-04 displayed fluorescence enhancement of up to 800-fold upon reaction with hydrazine, and all probes exhibited excellent selectivity in the presence of various anions and nucleophiles. By employing the probes in a cellulose paper-based array system, the hydrazine concentration was successfully determined by monitoring the change in fluorescent patterns.
Collapse
Affiliation(s)
- Min Chul Shin
- Department
of Molecular Science and Technology, Ajou
University, Suwon 16499, Korea
| | - Youngjun Lee
- CRI Center for Chemical Proteomics, Department of Chemistry and Department of Biophysics
and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry and Department of Biophysics
and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Eunha Kim
- Department
of Molecular Science and Technology, Ajou
University, Suwon 16499, Korea
| |
Collapse
|
11
|
Manna SK, Gangopadhyay A, Maiti K, Mondal S, Mahapatra AK. Recent Developments in Fluorometric and Colorimetric Chemodosimeters Targeted towards Hydrazine Sensing: Present Success and Future Possibilities. ChemistrySelect 2019. [DOI: 10.1002/slct.201803685] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Saikat Kumar Manna
- Department of ChemistryHaldia Government College, Debhog, Purba Medinipur - 721657 West Bengal India
| | - Ankita Gangopadhyay
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur, Howrah- 711103, West Bengal India
| | - Kalipada Maiti
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur, Howrah- 711103, West Bengal India
| | - Sanchita Mondal
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur, Howrah- 711103, West Bengal India
| | - Ajit Kumar Mahapatra
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur, Howrah- 711103, West Bengal India
| |
Collapse
|
12
|
John Xavier SS, Siva G, Ranjani M, Divya Rani S, Priyanga N, Srinivasan R, Pannipara M, Al-Sehemi AG, Gnana kumar G. Turn-on fluorescence sensing of hydrazine using MnO2 nanotube-decorated g-C3N4 nanosheets. NEW J CHEM 2019. [DOI: 10.1039/c9nj01370a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cost and time efficient preparation strategy is developed for the preparation of g-C3N4 nanosheets using urea and the challenges of g-C3N4 toward hydrazine sensing are addressed via the modification of g-C3N4 nanosheets with MnO2 nanotubes.
Collapse
Affiliation(s)
- S. Stanly John Xavier
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625-021
- India
| | - G. Siva
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625-021
- India
| | - M. Ranjani
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625-021
- India
| | - S. Divya Rani
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625-021
- India
| | - N. Priyanga
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625-021
- India
| | - R. Srinivasan
- Tamilnadu State Council for Science and Technology
- Chennai 600 025
- India
| | | | | | - G. Gnana kumar
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625-021
- India
| |
Collapse
|
13
|
Wang Y, Liu H, Song H, Yu M, Wei L, Li Z. Synthesis of dual-emission fluorescent carbon quantum dots and their ratiometric fluorescence detection for arginine in 100% water solution. NEW J CHEM 2019. [DOI: 10.1039/c9nj02806d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dual-emission carbon dots (CDs) can detect arginine in 100% water via ratiometric fluorescent method. The CDs exhibits good photostability, selectivity, and anti-interference ability, fast response time, and wide pH detection range.
Collapse
Affiliation(s)
- Yuying Wang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Hanxiao Liu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Huanhuan Song
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Mingming Yu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Liuhe Wei
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Zhanxian Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
14
|
Jin M, Liu X, Zhang X, Wang L, Bing T, Zhang N, Zhang Y, Shangguan D. Thiazole Orange-Modified Carbon Dots for Ratiometric Fluorescence Detection of G-Quadruplex and Double-Stranded DNA. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25166-25173. [PMID: 29979027 DOI: 10.1021/acsami.8b07869] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A new carbon dot (CD)-based nanoprobe for the ratiometric fluorescence detection of DNA was constructed in this work. Thiazole orange (TO), a specific organic small molecular probe toward DNA, is covalently linked to the surface of CDs, acting as the recognition element and the fluorescence response unit. In the absence of DNA, the nanoprobe only emitted the blue fluorescence of CDs, whereas TO was almost nonfluorescent. Upon addition of DNA, a turn-on emission at 530 nm appeared and gradually enhanced along with the increasing of the target DNA, whereas the fluorescence of CDs was unchanged, which realized the ratiometric detection of the target DNA. The CD-TO nanoprobe showed good selectivity to parallel G-quadruplex (G4) and double-stranded (ds) DNA over antiparallel G4 and single-stranded DNA. Moreover, the ratiometric fluorescence nanoprobe exhibited high sensitivity for ssab (a dsDNA) and c-myc (a parallel G4) with a low detection limit of 0.90 and 3.31 nM, respectively. Additionally, the G4/hemin peroxidase activity inhibition experiment demonstrated that CD-TO bound to the G4s through the end-stacking mode.
Collapse
Affiliation(s)
- Ming Jin
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Linlin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Yun Zhang
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
15
|
Lv H, Sun H, Wang S, Kong F. A novel dicyanoisophorone based red-emitting fluorescent probe with a large Stokes shift for detection of hydrazine in solution and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:160-167. [PMID: 29444498 DOI: 10.1016/j.saa.2018.02.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
A novel dicyanoisophorone based fluorescent probe HP was developed to detect hydrazine. Upon the addition of hydrazine, probe HP displayed turn-on fluorescence in the red region with a large Stokes shift (180nm). This probe exhibited high selectivity and high sensitivity to hydrazine in solution. The detection limit of HP was found to be 3.26ppb, which was lower than the threshold limit value set by USEPA (10ppb). Moreover, the probe was successfully applied to detect hydrazine in different water samples and living cells.
Collapse
Affiliation(s)
- Hongshui Lv
- School of Paper-making and Botanical Resources Engineering, Key Lab of Pulp and Paper Science & Technology, Ministry of Education (Shandong Province), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Haiyan Sun
- School of Paper-making and Botanical Resources Engineering, Key Lab of Pulp and Paper Science & Technology, Ministry of Education (Shandong Province), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shoujuan Wang
- School of Paper-making and Botanical Resources Engineering, Key Lab of Pulp and Paper Science & Technology, Ministry of Education (Shandong Province), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fangong Kong
- School of Paper-making and Botanical Resources Engineering, Key Lab of Pulp and Paper Science & Technology, Ministry of Education (Shandong Province), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
16
|
Li H, Dong H, Yu M, Liu C, Li Z, Wei L, Sun LD, Zhang H. NIR Ratiometric Luminescence Detection of pH Fluctuation in Living Cells with Hemicyanine Derivative-Assembled Upconversion Nanophosphors. Anal Chem 2017; 89:8863-8869. [PMID: 28707875 DOI: 10.1021/acs.analchem.7b01324] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It is crucial for cell physiology to keep the homeostasis of pH, and it is highly demanded yet challenging to develop luminescence resonance energy transfer (LRET)-based near-infrared (NIR) ratiometric luminescent sensor for the detection of pH fluctuation with NIR excitation. As promising energy donors for LRET, upconversion nanoparticles (UCNPs) have been widely used to fabricate nanosensors, but the relatively low LRET efficiency limits their application in bioassay. To improve the LRET efficiency, core/shell/shell structured β-NaGdF4@NaYF4:Yb,Tm@NaYF4 UCNPs were prepared and decorated with hemicyanine dyes as an LRET-based NIR ratiometric luminescent pH fluctuation-nanosensor for the first time. The as-developed nanosensor not only exhibits good antidisturbance ability, but it also can reversibly sense pH and linearly sense pH in a range of 6.0-9.0 and 6.8-9.0 from absorption and upconversion emission spectra, respectively. In addition, the nanosensor displays low dark toxicity under physiological temperature, indicating good biocompatibility. Furthermore, live cell imaging results revealed that the sensor can selectively monitor pH fluctuation via ratiometric upconversion luminescence behavior.
Collapse
Affiliation(s)
- Haixia Li
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou, Henan 450001, China
| | - Hao Dong
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Mingming Yu
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou, Henan 450001, China
| | - Chunxia Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou, Henan 450001, China
| | - Zhanxian Li
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou, Henan 450001, China
| | - Liuhe Wei
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou, Henan 450001, China
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| |
Collapse
|
17
|
Zhang B, Qin F, Niu H, Liu Y, Zhang D, Ye Y. A highly sensitive and fast responsive naphthalimide-based fluorescent probe for Cu2+ and its application. NEW J CHEM 2017. [DOI: 10.1039/c7nj02813j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The response of the probe L to Cu2+ is reversible and very fast (20 s). L has a low detection limit of 49 nM and was used for imaging of Cu2+ in MCF-7 cells with satisfying results. The sensor L can be analyzed with a molecular logic gate.
Collapse
Affiliation(s)
- Beibei Zhang
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
| | - Fengyun Qin
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
| | - Huawei Niu
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
| | - Yao Liu
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences
- Zhengzhou
- China
| | - Yong Ye
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University
| |
Collapse
|