1
|
Nguyen DT, Desgagné M, Laniel A, Lavoie C, Boudreault PL. Diversity-oriented synthesis of second generation guanidinium-rich transporters toward cell-selective penetration. Bioorg Chem 2025; 154:108041. [PMID: 39672076 DOI: 10.1016/j.bioorg.2024.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Cell-penetrating peptides (CPPs) hold significant promise for intracellular delivery of various cargo molecules such as therapeutics. However, the lack of selectivity remains a critical challenge and limits the clinical application of CPPs. Using an automated peptide synthesizer, we generated a diversity-oriented library of 256 peptidomimetics containing four modified peptoid guanidine-bearing monomers incorporated alternatively with four α-amino acids. These α-amino acids were chosen to enhance lipophilic interactions with the cell membrane (Phe, 2Nal) or to bear pH-sensitive properties (His), which could enhance cancer cell selectivity. The synthesized library exhibits selective internalization, with an average selectivity index (SI) of 1.49 for HeLa cells in comparison to non-cancerous HEK293 cells. Compounds 155 and 187, containing three His residues and either Phe or 2Nal, show high cellular uptake in HeLa cells (64.6% and 75.7%, respectively) and possess an SI of 2.7 and 2.9, respectively, at the tested dose of 5 μM. Altogether, these findings highlight the use of diversity-oriented library synthesis to identify cell-permeable candidates as well as their potential for targeted cellular delivery and enhanced specificity.
Collapse
Affiliation(s)
- Duc Tai Nguyen
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Michael Desgagné
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Andréanne Laniel
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Christine Lavoie
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| | - Pierre-Luc Boudreault
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
2
|
Laniel A, Marouseau É, Nguyen DT, Froehlich U, McCartney C, Boudreault PL, Lavoie C. Characterization of PGua 4, a Guanidinium-Rich Peptoid that Delivers IgGs to the Cytosol via Macropinocytosis. Mol Pharm 2023; 20:1577-1590. [PMID: 36781165 PMCID: PMC9997486 DOI: 10.1021/acs.molpharmaceut.2c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
To investigate the structure-cellular penetration relationship of guanidinium-rich transporters (GRTs), we previously designed PGua4, a five-amino acid peptoid containing a conformationally restricted pattern of eight guanidines, which showed high cell-penetrating abilities and low cell toxicity. Herein, we characterized the cellular uptake selectivity, internalization pathway, and intracellular distribution of PGua4, as well as its capacity to deliver cargo. PGua4 exhibits higher penetration efficiency in HeLa cells than in six other cell lines (A549, Caco-2, fibroblast, HEK293, Mia-PaCa2, and MCF7) and is mainly internalized by clathrin-mediated endocytosis and macropinocytosis. Confocal microscopy showed that it remained trapped in endosomes at low concentrations but induced pH-dependent endosomal membrane destabilization at concentrations ≥10 μM, allowing its diffusion into the cytoplasm. Importantly, PGua4 significantly enhanced macropinocytosis and the cellular uptake and cytosolic delivery of large IgGs following noncovalent complexation. Therefore, in addition to its peptoid nature conferring high resistance to proteolysis, PGua4 presents characteristics of a promising tool for IgG delivery and therapeutic applications.
Collapse
Affiliation(s)
- Andréanne Laniel
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Étienne Marouseau
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Duc Tai Nguyen
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ulrike Froehlich
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claire McCartney
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Christine Lavoie
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
3
|
KHURANA RAMAN, Yang F, Khurana R, Liu J, Keinan E, Reany O. semiaza-Bambusurils are Anion-Specific Transmembrane Transporters . Chem Commun (Camb) 2022; 58:3150-3153. [DOI: 10.1039/d2cc00144f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
semiaza-Bambus[6]urils efficiently transport anions across lipid membranes. A systematic modification of their lipophilic side chains to include various alkyl groups and thioethers reveal that the most efficient chloride transporters are...
Collapse
|
4
|
Herlan CN, Meschkov A, Schepers U, Bräse S. Cyclic Peptoid-Peptide Hybrids as Versatile Molecular Transporters. Front Chem 2021; 9:696957. [PMID: 34249865 PMCID: PMC8267177 DOI: 10.3389/fchem.2021.696957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Addressing intracellular targets is a challenging task that requires potent molecular transporters capable to deliver various cargos. Herein, we report the synthesis of hydrophobic macrocycles composed of both amino acids and peptoid monomers. The cyclic tetramers and hexamers were assembled in a modular approach using solid as well as solution phase techniques. To monitor their intracellular localization, the macrocycles were attached to the fluorophore Rhodamine B. Most molecular transporters were efficiently internalized by HeLa cells and revealed a specific accumulation in mitochondria without the need for cationic charges. The data will serve as a starting point for the design of further cyclic peptoid-peptide hybrids presenting a new class of highly efficient, versatile molecular transporters.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems- Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anna Meschkov
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Karlsruhe Institute of Technology (KIT), EPICUR European University, Karlsruhe, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems- Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
5
|
Sarret P. Éric Marsault (1971-2021): A Legacy through the Prism of Relationship Chemistry. J Med Chem 2021; 64:5221-5224. [PMID: 33760613 DOI: 10.1021/acs.jmedchem.1c00481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Philippe Sarret
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
6
|
Sikandar S, Zahoor AF, Naheed S, Parveen B, Ali KG, Akhtar R. Fukuyama reduction, Fukuyama coupling and Fukuyama-Mitsunobu alkylation: recent developments and synthetic applications. Mol Divers 2021; 26:589-628. [PMID: 33575984 DOI: 10.1007/s11030-021-10194-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
Fukuyama reaction for the synthesis of multifunctional aldehydes, secondary amines and ketones has gained considerable importance in synthetic organic chemistry because of mild reaction conditions. The use of thioesters in both Fukuyama aldehydes and ketones synthesis is highly attractive for organic chemists as they are easily accessible from corresponding carboxylic acids. Fukuyama-Mitsunobu reaction utilizes 2-nitrobenzenesulfonyl (Ns) for the protection/activation/deprotection of primary amines to afford secondary amines in good yields and high enantioselectivities. This review presents recent synthetic developments and applications of Fukuyama reaction for the synthesis of aldehydes, secondary amines and ketones.
Collapse
Affiliation(s)
- Sana Sikandar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shazia Naheed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
7
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
8
|
Yokoo H, Misawa T, Demizu Y. De Novo Design of Cell-Penetrating Foldamers. CHEM REC 2020; 20:912-921. [PMID: 32463155 DOI: 10.1002/tcr.202000047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Abstract
Cell-penetrating peptides (CPPs) have gained much attention as carriers of hydrophilic molecules, such as drugs, peptides, and nucleic acids, into cells. CPPs are mainly composed of cationic amino acid residues, which play an important role in their intracellular uptake via interactions with acidic groups on cell surfaces. In addition, the secondary structures of CPPs also affect their cell-membrane permeability. Based on this knowledge, a variety of cell-penetrating foldamers (oligomers that form organized secondary structures) have been developed to date. In this account, we describe recent attempts to develop cell-penetrating foldamers containing various building blocks, and their application as DDS carriers.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
9
|
Kim S, Nam HY, Lee J, Seo J. Mitochondrion-Targeting Peptides and Peptidomimetics: Recent Progress and Design Principles. Biochemistry 2019; 59:270-284. [PMID: 31696703 DOI: 10.1021/acs.biochem.9b00857] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are multifunctional subcellular organelles whose operations encompass energy production, signal transduction, and metabolic regulation. Given their wide range of roles, they have been studied extensively as a potential therapeutic target for the treatment of various diseases, including cancer, diabetes, and neurodegenerative diseases. Mitochondrion-mediated pathways have been identified as promising targets in the context of these diseases. However, the delivery of specific probes and drugs to the mitochondria is one of the major problems that remains to be solved. Over the past decade, much effort has been devoted to developing mitochondrion-targeted delivery methods based on the membrane characteristics and the protein import machinery of mitochondria. While various methods utilizing small molecules to polymeric particles have been introduced, it is notable that many of these compounds share common structural elements and physicochemical properties for optimal selectivity and efficiency. In this Perspective, we will review the most recently developed mitochondrion-targeting peptides and peptidomimetics to outline the key aspects of structural requirements and design principles. We will also discuss successful and potential applications of mitochondrial delivery to assess opportunities and challenges in the targeting of mitochondria.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science , Sungshin University , Seoul 01133 , Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| |
Collapse
|
10
|
Culf AS. Peptoids as tools and sensors. Biopolymers 2019; 110:e23285. [PMID: 31070792 DOI: 10.1002/bip.23285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
A review of molecular tools and sensors assembled on N-substituted glycine, or α-peptoid, oligomers between 2013 and November 2018 with the following sections: (a) Peptoids as crystal growth modifiers, (b) Peptoids as catalysts, (c) Ion and molecule sequestration and transport, (d) Peptoid sensors, (e) Macromolecule recognition, (f) Cellular transporters, (g) Medical imaging, (h) Future direction and (i) Summary and outlook. Peptoids are a promising class of peptide mimic making them an excellent platform for functional molecule preparation. Attributes of peptoid oligomers include: (a) the ease of precise sequence definition and mono-dispersity; (b) access to a vast chemical space within simple and repeating chemical preparative steps and (c) thermal, chemical and biological stability all lending support for their application in a number of areas, with some that have been realised to date. The peptoid tool and sensor examples selected have realised practical utility. They serve to illustrate the rapidity of new insight that can generate in many disparate areas of science and technology, enabling the quick assembly of design criteria for efficient peptoid molecular tools and sensors.
Collapse
Affiliation(s)
- Adrian S Culf
- Sussex Research Laboratories, Inc., Ottawa, Ontario, Canada
| |
Collapse
|