1
|
Wang D, Ju W, Li T, Zhou Q, Zhang Y, Gao Z, Kang D, Li H, Gong S. Dipole control of Rashba spin splitting in a type-II Sb/InSe van der Waals heterostructure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 33:045501. [PMID: 32987372 DOI: 10.1088/1361-648x/abbc35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
InSe monolayer, belonging to group III-VI chalcogenide family, has shown promising performance in the realm of spintronic. Nevertheless, the out-of-plane mirror symmetry in InSe monolayer constrains the electrons' degrees of freedom, and this will confine its spin-related applications. Herein, we construct Sb/InSe van der Waals heterostructure to extend the electronic and spintronic properties of InSe. The density functional theory is utilized to verify the tunable electronic properties and Rashba spin splitting (RSS) of Sb/InSe heterostructure. According to the obtained results, the Sb/InSe heterostructure can be considered as a direct band gap semiconductor with typical type-II band alignment, where the electrons and holes are localized in the InSe and Sb layers, respectively. The RSS is recognized at conduction band minimum around Γ point in Sb/InSe, which is induced by the spontaneous internal electric field with electric dipole moment of 0.016 e Å from Sb to InSe. The vertical strain, in-plane strain, and external electric field are employed to modulate the strength of RSS. The Rashba coefficient and dipole moment exhibit the similar variation tendency, suggesting the strength of RSS depends on the magnitude of dipole moment. The controllable RSS makes Sb/InSe heterostructure become an appropriate candidate material for spintronic devices.
Collapse
Affiliation(s)
- Donghui Wang
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Weiwei Ju
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Tongwei Li
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Qingxiao Zhou
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Yi Zhang
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Zijian Gao
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Dawei Kang
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Haisheng Li
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Shijing Gong
- Department of optoelectrics, East China Normal University, Shanghai 200062, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|