1
|
Wang Y, Li F, Bai L, Yang X, Wu Z. Adsorption, Aggregation, and Application Properties of Green Pluronic Aliphatic Alcohol Ether Carboxylic Acids and Nonionic/Amphoteric Surfactants in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24338-24349. [PMID: 39404705 DOI: 10.1021/acs.langmuir.4c02766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
In the realm of colloid and interface science, new types of green surfactants, including anionic Pluronic alcohol ether carboxylate (AEC), branched alkyl glucoside (IG), and zwitterionic coconut oil amide propyl betaine (CAB), have been identified and merit further exploration. AEC, characterized by its inclusion of 5 EO and 3.5 PO units, was synthesized, and its behavior in aqueous solutions with IG and CAB was meticulously examined. Their performance in applications such as foam generation, wetting, and the dispersion and stabilization of graphene was also evaluated. At αAE5P3C = 0.5, AE5P3C/CAB exhibited superior surface and interfacial properties compared to AE5P3C/IG. In these hybrid systems, the self-assembly of micelles is predominantly influenced by hydrogen bonding, electrostatic interactions, and hydrophobic forces. Kinetic analysis further confirmed that the driving force for micelle formation in these hybrid systems is enthalpy, with the adsorption process involving a mixed diffusion-kinetic adsorption mechanism. AE5P3C/CAB demonstrated enhanced foaming ability, foam stability, and wetting properties compared to AE5P3C/IG. Intriguingly, the optimal dispersion and stabilization of graphene were achieved with AE5P3C/IG at αAE5P3C = 0.2, providing a foundational basis for its potential application in graphene-based systems. A thorough examination of the synergistic mechanisms and application potential of these three distinct surfactants in aqueous solutions was presented, taking into account various charged ions and the specific hydrophilic and hydrophobic groups of EO and PO. This study not only provides fundamental insights into their intrinsic properties but also offers a fresh perspective for the ongoing exploration of green surfactants.
Collapse
Affiliation(s)
- Yukai Wang
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan 030001, Shanxi, China
| | - Fengqin Li
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan 030001, Shanxi, China
| | - Liang Bai
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan 030001, Shanxi, China
| | - Xiuquan Yang
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan 030001, Shanxi, China
| | - Zhiyu Wu
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan 030001, Shanxi, China
| |
Collapse
|
2
|
Lin Z, Li J, Jiang Y, Wang Z, Wang Y, Tao G, Zhang L. Interaction, Surface Activity, and Application of Mixed Systems of Alcohol Ether Sulfate Anionic Surfactants with Multiple Ethylene Oxide Groups and Gemini Quaternary Ammonium Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10044-10058. [PMID: 38693856 DOI: 10.1021/acs.langmuir.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The surface activities and application properties for the mixtures of cationic surfactants tetramethylene-1,4-bis[N,N-bis(hydroxypropyl)-hexa/decyloxypropylammonium] bromide (GC10-P) and tetramethylene-1,4-bis[N,N-bis(hydroxyethyl)-hexa/decyloxypropylammonium] bromide (GC10-E) and anionic surfactant isomeric sodium fatty alcohol ether sulfates (iso-AE9S) were investigated using both the tensiometry and the conductometry. The interaction parameters and thermodynamic micellization parameters of GC10-P/iso-AE9S and GC10-E/iso-AE9S mixtures were evaluated by Clint-Rubingh and Motomura theoretical models. When the mole fraction of α1 for GC10-P/iso-AE9S mixed system was 0.2, the critical micelle concentration (CMC) reached a minimum of 1.61 × 10-4 mol/L, and the minimum critical micelle concentration of the GC10-E/iso-AE9S mixed system is 2.67 × 10-5 mol/L at α1 = 0.6. The CMC value of the mixed system is 1-2 orders of magnitude lower than that of any single component. The results indicate that the synergistic effects of the investigated mixed systems (evaluated by βm) are in order of GC10-P/iso-AE9S < GC10-E/iso-AE9S, with maximum βm values of -17.98 and -9.78, respectively. The change in zeta potential indicates that the poly(ethylene oxide) chain has weakened the charge density of the hydrophilic headgroup of the anionic surfactant. The interfacial tension at the oil-water interface in the mixed system of anionic/cationic surfactants is lower than that of any single component, exhibiting a higher interfacial activity. The mixed system exhibits a decreased contact angle and superior wetting ability over any single component, and it also enhances foam performance, emulsification performance, and degreasing performance.
Collapse
Affiliation(s)
- Zengzi Lin
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan 030001, Shanxi China
| | - Jun Li
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan 030001, Shanxi China
| | - Yajie Jiang
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan 030001, Shanxi China
| | - Zhifei Wang
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan 030001, Shanxi China
| | - Yakui Wang
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan 030001, Shanxi China
| | - Geng Tao
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan 030001, Shanxi China
| | - Lu Zhang
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan 030001, Shanxi China
| |
Collapse
|
3
|
Wang Y, Zhang Z, Bai L, Yang X, Qi Y, Li J, Zhou Y, Wu Z, Qin Z. Self-assembly mechanism, physicochemical analyses and application performance investigations of branched alkyl glycosides with alcohol ether carboxylic acids of varied epoxide numbers. Phys Chem Chem Phys 2024; 26:8448-8459. [PMID: 38410085 DOI: 10.1039/d3cp05780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Green surfactants, specifically alkyl glycosides and fatty alcohol ether carboxylic acids, are known for their biocompatibility, multiresponsiveness, and versatile applications, garnering significant attention in the realms of green and colloid chemistry. This study systematically investigated the mechanism underlying micelle formation within aqueous solutions comprising alcohol ether carboxylic acids featuring diverse EO group chain quantities (AEC-nH, where n equals 5, 7, and 9) and branched alkyl glycosides (IG). The elucidation of these mechanisms sheds light on their prospective application properties. It was observed that the self-assembly of micelles in these hybrid systems is predominantly influenced by hydrogen bonding, electrostatic interactions, and hydrophobic forces. The spherical-rod morphology of the micelles responds to the varying numbers of EO group chains, with an increased number of EO leading to the formation of rod-like micelles, which exhibit relative instability, while a decreased number of EO results in the formation of spherical micelles with relative stability. Additionally, by means of kinetic analysis, it was determined that the micelle formation process of the three hybrid systems is driven by enthalpy, and a mixed diffusion-kinetics adsorption mechanism is involved in the adsorption process. These findings significantly impact their application properties. This report stands as the first exploration of the synergistic mechanisms and application performance of two types of green surfactants in aqueous solutions, considering the influence of different numbers of EO group chains. Not only does it provide fundamental insights into their properties, but it also offers novel perspectives on the applications of green surface activation.
Collapse
Affiliation(s)
- Yukai Wang
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China.
| | - Zhihui Zhang
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China.
| | - Liang Bai
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China.
| | - Xiuquan Yang
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China.
| | - Yunqin Qi
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China.
| | - Jiahao Li
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China.
| | - Yuan Zhou
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China.
| | - Zhiyu Wu
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China.
| | - Ziyu Qin
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
4
|
Experimental Study of the Rheology of Cellulose Nanocrystals-enhanced C22-tailed Zwitterionic Wormlike Micelles. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Patel MC, Ayoub MA, Hassan AM, Idress MB. A Novel ZnO Nanoparticles Enhanced Surfactant Based Viscoelastic Fluid Systems for Fracturing under High Temperature and High Shear Rate Conditions: Synthesis, Rheometric Analysis, and Fluid Model Derivation. Polymers (Basel) 2022; 14:polym14194023. [PMID: 36235972 PMCID: PMC9571908 DOI: 10.3390/polym14194023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Surfactant-based viscoelastic (SBVE) fluids are innovative nonpolymeric non-newtonian fluid compositions that have recently gained much attention from the oil industry. SBVE can replace traditional polymeric fracturing fluid composition by mitigating problems arising during and after hydraulic fracturing operations are performed. In this study, SBVE fluid systems which are entangled with worm-like micellar solutions of cationic surfactant: cetrimonium bromide or CTAB and counterion inorganic sodium nitrate salt are synthesized. The salt reagent concentration is optimized by comparing the rheological characteristics of different concentration fluids at 25 °C. The study aims to mitigate the primary issue concerning these SBVE fluids: significant drop in viscosity at high temperature and high shear rate (HTHS) conditions. Hence, the authors synthesized a modified viscoelastic fluid system using ZnO nanoparticle (NPs) additives with a hypothesis of getting fluids with improved rheology. The rheology of optimum fluids of both categories: with (0.6 M NaNO3 concentration fluid) and without (0.8 M NaNO3 concentration fluid) ZnO NPs additives were compared for a range of shear rates from 1 to 500 Sec−1 at different temperatures from 25 °C to 75 °C to visualize modifications in viscosity values after the addition of NPs additives. The rheology in terms of viscosity was higher for the fluid with 1% dispersed ZnO NPs additives at all temperatures for the entire range of shear rate values. Additionally, rheological correlation function models were derived for the synthesized fluids using statistical analysis methods. Subsequently, Herschel–Bulkley models were developed for optimum fluids depending on rheological correlation models. In the last section of the study, the pressure-drop estimation method is described using given group equations for laminar flow in a pipe depending on Herschel–Bulkley-model parameters have been identified for optimum fluids are consistency, flow index and yield stress values.
Collapse
Affiliation(s)
- Mahesh Chandra Patel
- Department of Petroleum Engineering, Universiti Teknologi Petronas, Perak 32610, Malaysia
- Correspondence: ; Tel.: +60-1115850114
| | - Mohammed Abdalla Ayoub
- Department of Petroleum Engineering, Universiti Teknologi Petronas, Perak 32610, Malaysia
| | - Anas Mohammed Hassan
- Petroleum Engineering Department, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Mazlin Bt Idress
- Department of Petroleum Engineering, Universiti Teknologi Petronas, Perak 32610, Malaysia
| |
Collapse
|
6
|
Alves AAS, Sousa FJPM, Sebastião M, Antunes FE. Influence of electrolytes on the structural and viscosity properties of mixed anionic–nonionic–zwitterionic surfactants in detergent formulations. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Advances of supramolecular interaction systems for improved oil recovery (IOR). Adv Colloid Interface Sci 2022; 301:102617. [PMID: 35217257 DOI: 10.1016/j.cis.2022.102617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/07/2023]
Abstract
Improved oil recovery (IOR) includes enhanced oil recovery (EOR) and other technologies (i.e. fracturing, water injection optimization, etc.), have become important methods to increase the oil/gas production in petroleum industry. However, conventional flooding systems always encounter the problems of low efficiency, high cost and complicated synthetic procedures for harsh reservoirs conditions. In recent decades, the supramolecular interactions are introduced into IOR processes to simplify the synthetic procedures, alter their structures and properties with bespoke functionalities and responsiveness suitable for different conditions. Herein, we primarily review the fundamentals of several supramolecular interactions, including hydrophobic association, hydrogen bond, electrostatic interaction, host-guest recognition, metal-ligand coordination and dynamic covalent bond from intrinsic principles and extrinsic functions. Then, the descriptions of supramolecular interactions in IOR processes from categories and advances are focused on the following variables: polymer, surfactant, surfactant/polymer (SP) complex for EOR and viscoelasticity surfactant (VES) for clean hydraulic fracturing aspects. Finally, the field applications, challenges and prospects for supramolecular interactions in IOR processes are involved and systematically addressed. The development of supramolecular interactions can open the way toward adaptive and evolutive IOR technology, a further step towards the cost-effective production of petroleum industry.
Collapse
|
8
|
Pan Y, Ge B, Zhang Y, Li P, Guo B, Zeng X, Pan J, Lin S, Yuan P, Hou L. Surface activity and cleaning performance of Gemini surfactants with rosin groups. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Gang HZ, He X, He X, Bao X, Liu J, Yang S, Li Y, Mu BZ. Interfacial properties and salt tolerance of carboxylated nonylphenol ethoxylate surfactants. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Khodaparast S, Sharratt WN, Tyagi G, Dalgliesh RM, Robles ESJ, Cabral JT. Pure and mixed aqueous micellar solutions of Sodium Dodecyl sulfate (SDS) and Dimethyldodecyl Amine Oxide (DDAO): Role of temperature and composition. J Colloid Interface Sci 2021; 582:1116-1127. [PMID: 32942067 DOI: 10.1016/j.jcis.2020.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/22/2020] [Accepted: 08/02/2020] [Indexed: 11/26/2022]
Abstract
Aqueous mixtures of anionic and nonionic/cationic surfactants can form non-trivial self-assemblies in solution and exhibit macroscopic responses. Here, we investigate the micellar phase of pure and mixed aqueous solutions of Sodium Dodecyl Sulfate (SDS) and Dimethyldodecyl Amine Oxide (DDAO) using a combination of Small Angle Neutron Scattering (SANS), Fourier-Transform Infrared Spectroscopy (FTIR) and rheological measurements. We examine the effect of temperature (0-60 °C), on the 20 wt% SDS micellar solutions with varying DDAO (⩽5 wt%), and seek to correlate micellar structure with zero-shear solution viscosity. SANS establishes the formation of prolate ellipsoidal micelles in aqueous solutions of pure SDS, DDAO and SDS/DDAO mixtures, whose axial ratio is found to increase upon cooling. Elongation of the ellipsoidal micelles of pure SDS is also induced by the introduction of the non-anionic DDAO, which effectively reduces the repulsive interactions between the anionic SDS head-groups. In FTIR measurements, the formation of elongated mixed ellipsoidal micelles is confirmed by the increase of ordering in the hydrocarbon chain tails and interaction between surfactant head-groups. We find that the zero-shear viscosity of the mixed surfactant solutions increases exponentially with decreasing temperature and increasing DDAO content. Significantly, a master curve for solution viscosity can be obtained in terms of micellar aspect ratio, subsuming the effects of both temperature and DDAO composition in the experimental range investigated. The intrinsic viscosity of mixed micellar solutions is significantly larger than the analytical and numerical predictions for Brownian suspensions of ellipsoidal colloids, highlighting the need to consider interactions of soft micelles under shear, especially at high concentrations.
Collapse
Affiliation(s)
- Sepideh Khodaparast
- Chemical Engineering Department, Imperial College London, SW7 2AZ London, United Kingdom; School of Mechanical Engineering, University of Leeds, LS2 9JT Leeds, United Kingdom.
| | - William N Sharratt
- Chemical Engineering Department, Imperial College London, SW7 2AZ London, United Kingdom
| | - Gunjan Tyagi
- Chemical Engineering Department, Imperial College London, SW7 2AZ London, United Kingdom
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, OX11 0QX Didcot, United Kingdom
| | - Eric S J Robles
- The Procter & Gamble Company, Newcastle Innovation Centre, NE12 9TS Newcastle-Upon-Tyne, United Kingdom
| | - João T Cabral
- Chemical Engineering Department, Imperial College London, SW7 2AZ London, United Kingdom.
| |
Collapse
|
11
|
Shibaev AV, Aleshina AL, Arkharova NA, Orekhov AS, Kuklin AI, Philippova OE. Disruption of Cationic/Anionic Viscoelastic Surfactant Micellar Networks by Hydrocarbon as a Basis of Enhanced Fracturing Fluids Clean-Up. NANOMATERIALS 2020; 10:nano10122353. [PMID: 33260867 PMCID: PMC7761115 DOI: 10.3390/nano10122353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Studies of the effects produced by the solubilization of hydrophobic substances by micellar aggregates in water medium are quite important for applications of viscoelastic surfactant solutions for enhanced oil recovery (EOR), especially in hydraulic fracturing technology. The present paper aims at the investigation of the structural transformations produced by the absorption of an aliphatic hydrocarbon (n-decane) by mixed wormlike micelles of cationic (n-octyltrimethylammonium bromide, C8TAB) and anionic (potassium oleate) surfactants enriched by C8TAB. As a result of contact with a small amount (0.5 wt%) of oil, a highly viscoelastic fluid is transformed to a water-like liquid. By small-angle neutron scattering (SANS) combined with cryo-TEM, it was shown that this is due to the transition of long wormlike micelles with elliptical cross-sections to ellipsoidal microemulsion droplets. The non-spherical shape was attributed to partial segregation of longer- and shorter-tail surfactant molecules inside the surfactant monolayer, providing an optimum curvature for both of them. As a result, the long-chain surfactant could preferably be located in the flatter part of the aggregates and the short-chain surfactant—at the ellipsoid edges with higher curvature. It is proven that the transition proceeds via a co-existence of microemulsion droplets and wormlike micelles, and upon the increase of hydrocarbon content, the size and volume fraction of ellipsoidal microemulsion droplets increase. The internal structure of the droplets was revealed by contrast variation SANS, and it was shown that, despite the excess of the cationic surfactant, the radius of surfactant shell is controlled by the anionic surfactant with longer tail. These findings open a way for optimizing the performance of viscoelastic surfactant fluids by regulating both the mechanical properties of the fluids and their clean-up from the fracture induced by contact with hydrocarbons.
Collapse
Affiliation(s)
- Andrey V. Shibaev
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.A.); (O.E.P.)
- Correspondence: ; Tel.: +7-495-939-1464
| | - Anna L. Aleshina
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.A.); (O.E.P.)
| | | | - Anton S. Orekhov
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia;
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
| | - Alexander I. Kuklin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Olga E. Philippova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.A.); (O.E.P.)
| |
Collapse
|
12
|
Experimental Investigation and Performance Evaluation of Modified Viscoelastic Surfactant (VES) as a New Thickening Fracturing Fluid. Polymers (Basel) 2020; 12:polym12071470. [PMID: 32629958 PMCID: PMC7408097 DOI: 10.3390/polym12071470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022] Open
Abstract
In hydraulic fracturing, fracturing fluids are used to create fractures in a hydrocarbon reservoir throughout transported proppant into the fractures. The application of many fields proves that conventional fracturing fluid has the disadvantages of residue(s), which causes serious clogging of the reservoir’s formations and, thus, leads to reduce the permeability in these hydrocarbon reservoirs. The development of clean (and cost-effective) fracturing fluid is a main driver of the hydraulic fracturing process. Presently, viscoelastic surfactant (VES)-fluid is one of the most widely used fracturing fluids in the hydraulic fracturing development of unconventional reservoirs, due to its non-residue(s) characteristics. However, conventional single-chain VES-fluid has a low temperature and shear resistance. In this study, two modified VES-fluid are developed as new thickening fracturing fluids, which consist of more single-chain coupled by hydrotropes (i.e., ionic organic salts) through non-covalent interaction. This new development is achieved by the formulation of mixing long chain cationic surfactant cetyltrimethylammonium bromide (CTAB) with organic acids, which are citric acid (CA) and maleic acid (MA) at a molar ratio of (3:1) and (2:1), respectively. As an innovative approach CTAB and CA are combined to obtain a solution (i.e., CTAB-based VES-fluid) with optimal properties for fracturing and this behaviour of the CTAB-based VES-fluid is experimentally corroborated. A rheometer was used to evaluate the visco-elasticity and shear rate & temperature resistance, while sand-carrying suspension capability was investigated by measuring the settling velocity of the transported proppant in the fluid. Moreover, the gel breaking capability was investigated by determining the viscosity of broken VES-fluid after mixing with ethanol, and the degree of core damage (i.e., permeability performance) caused by VES-fluid was evaluated while using core-flooding test. The experimental results show that, at pH-value (6.17), 30 (mM) VES-fluid (i.e., CTAB-CA) possesses the highest visco-elasticity as the apparent viscosity at zero shear-rate reached nearly to 106 (mPa·s). Moreover, the apparent viscosity of the 30 (mM) CTAB-CA VES-fluid remains 60 (mPa·s) at (90 ∘C) and 170 (s−1) after shearing for 2-h, indicating that CTAB-CA fluid has excellent temperature and shear resistance. Furthermore, excellent sand suspension and gel breaking ability of 30 (mM) CTAB-CA VES-fluid at 90 (∘C) was shown; as the sand suspension velocity is 1.67 (mm/s) and complete gel breaking was achieved within 2 h after mixing with the ethanol at the ratio of 10:1. The core flooding experiments indicate that the core damage rate caused by the CTAB-CA VES-fluid is (7.99%), which indicate that it does not cause much damage. Based on the experimental results, it is expected that CTAB-CA VES-fluid under high-temperature will make the proposed new VES-fluid an attractive thickening fracturing fluid.
Collapse
|
13
|
Li J, Li Y, Zhang Q, Song Y, Wang Z. Properties and Vesicle Formation in Mixed Systems of a Branched Anionic Carboxylate Surfactant and a Cationic Surfactant. TENSIDE SURFACT DET 2020. [DOI: 10.3139/113.110658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Mixtu res of the anionic surfactant AEC7-Na (branched alcohol ether carboxylate) and the cationic surfactant didecylmethylhydroxyethylammonium chloride (DEQ) were systematically investigated. The results showed that the mixtures possess synergisms. The DEQ-AEC7-Na mixture with a mass ratio of 1:1 showed the best result in terms of surface activity, wettability and emulsifying performance. However, when the mass ratio m(DEQ):m(AEC7-Na) = 8:2, the foaming ability and foam stability of the individual surfactants are better. Vesicles smaller than 100 nm coexist with worm-like micelles as soon as a small amount of AEC7- Na is added to DEQ (m(DEQ):m(AEC7-Na) = 8:2). At m(DEQ):m(AEC7-Na) = 4:6 and 2:8, vesicles of approximate ly 80 nm were observed.
Collapse
|
14
|
Co-solvent Effect on Spontaneous Formation of Large Nanoscale Structures in Catanionic Mixtures in the Anionic-Rich Region. J SOLUTION CHEM 2019. [DOI: 10.1007/s10953-019-00935-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractThe aggregation behavior was investigated in mixtures of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) (anionic-rich catanionic) solutions. The study was conducted in solutions of water–ethylene glycol (EG) by means of surface tension, conductometry, cyclic voltammetry, zeta potential measurements, transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. The degree of counterion dissociation (α), critical micelle concentration, aggregation numbers, interfacial properties, interparticle interaction parameters, and morphology of aggregates were determined. Based on regular solution theory, the cosolvent effects between SDS and CTAB as surfactants were also analyzed for both mixed monolayers at mixed micelles (βM) and the air/liquid interface (βσ). It was shown that the formation of large aggregates occurred in the presence of an excess of anionic surfactant. A phase transition from cylindrical micelles to spherical micelles in the anionic-rich regime was observed with an increase in the EG volume fraction. The inter particle interactions were assessed in terms of cosolvent effects on the micellar surface charge density and the cylindrical-to-spherical morphology change. Zeta potential and size of the aggregates were determined using dynamic light scattering and confirmed the models suggested for the processes taking place in each system.
Collapse
|
15
|
Wang P, Zhu T, Hou X, Zhao Y, Zhang X, Wang T, Yang H, Kang W. Responsive wormlike micelle with pH-induced transition of hydrotrope based on dynamic covalent bond. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110935] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
A new insight into the dependence of relaxation time on frequency in viscoelastic surfactant solutions: From experimental to modeling study. J Colloid Interface Sci 2018; 517:265-277. [DOI: 10.1016/j.jcis.2018.01.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 11/17/2022]
|
17
|
Feng L, Xie D, Song B, Zhang J, Pei X, Cui Z. Aggregate evolution in aqueous solutions of a Gemini surfactant derived from dehydroabietic acid. SOFT MATTER 2018; 14:1210-1218. [PMID: 29350229 DOI: 10.1039/c7sm02173a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Innovations in surfactant structure are a feasible way to probe molecular self-assembly principles. Herein, the solution behaviour of a newly synthesized Gemini surfactant derived from dehydroabietic acid, abbreviated R-(EO)-E-R, was investigated using surface tension, fluorescence, isothermal titration calorimetry (ITC), rheology, freeze-fracture transmission electron microscopy (FF-TEM) and cryogenic transmission electron microscopy (cryo-TEM) methods. R-(EO)-E-R has two large, rigid hydrophobic groups. At low concentrations, R-(EO)-E-R forms micelles with an aggregation number of approximately 10, which is smaller than those of Gemini surfactants containing flexible alkyl tails. In addition, the micellization process is less exothermic because of the rigidity of the hydrophobic portions. As the concentration increases, R-(EO)-E-R without any additives forms wormlike micelles, endowing the solution with an obvious viscoelasticity. Further increases in the concentration lead to the coexistence of single-walled vesicles, double-walled vesicles and rarely observed long, tubular vesicles. This behaviour is attributed to the two large, rigid hydrophobic groups of R-(EO)-E-R, which increase the density of the hydrophobic portion around the ionic head groups and facilitate the formation of aggregates with lower curvatures and asymmetric morphology. Surfactants containing rigid hydrophobic portions are expected to result in more delicate, self-assembled morphologies with broad applications.
Collapse
Affiliation(s)
- Lin Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | | | | | | | | | | |
Collapse
|
18
|
Wang Y, Song H, Yu M, Xu C, Liu Y, Tang J, Yang Y, Yu C. Room temperature synthesis of dendritic mesoporous silica nanoparticles with small sizes and enhanced mRNA delivery performance. J Mater Chem B 2018; 6:4089-4095. [DOI: 10.1039/c8tb00544c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dendritic mesoporous silica nanoparticles with a small diameter (∼50 nm) and a large pore size (>20 nm) are synthesized at room temperature for intracellular mRNA delivery.
Collapse
Affiliation(s)
- Yue Wang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Meihua Yu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Chun Xu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Yang Liu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| |
Collapse
|
19
|
Zhang L, Kang W, Xu D, Jiang J, Feng H, Yang M, Zhou Q, Wu H. Study on thermally-induced aggregates transformation and its mechanism in cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactants mixtures. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.03.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|