1
|
Kumar S, Kumar M, Bhalla V. Cobalt-Centered Supramolecular Nanoensemble for Regulated Aerobic Oxidation of Alcohols and "One-Pot" Synthesis of Quinazolin-4(3 H)-ones. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49246-49258. [PMID: 37844300 DOI: 10.1021/acsami.3c11244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The supramolecular assemblies of the donor-acceptor (D-A) system Im-Tpy, having phenanthro[9,10-d]imidazole as the donor and terpyridyl group as the acceptor unit, have been developed, which serve as supramolecular host to stabilize Co(II) in its nanoform. The as-prepared supramolecular nanoensemble Im-Tpy@Co in DMSO:water (7:3) shows high thermal stability and photostability. Even in the case of solvent mismatch, i.e., on dilution with cosolvent THF/DMSO, insignificant changes were observed in the size/morphology of the nanoensemble. The as-prepared Im-Tpy@Co nanoensemble in low catalytic loading (0.1 mol % of Co) catalyzes the oxidation of a wide variety of alcohols to aromatic aldehydes/ketones using visible light radiations as the source of energy without the need of any additive at room temperature. In comparison to already reported systems, the Im-Tpy@Co nanoensemble exhibits high turnover numbers (TONs) and turnover frequencies (TOFs). The practical application of the catalytic system has also been demonstrated in the gram-scale synthesis of 4-chlorobenzaldehyde. The Im-Tpy@Co nanoensemble exhibits recyclability up to four catalytic cycles with insignificant leaching and morphological changes. The present study also demonstrates the catalytic activity of the Im-Tpy@Co nanoensemble in "one-pot" synthesis of quinazolin-4(3H)-ones from 2-aminobenzamide and primary alcohols with better efficiency in comparison to other transition-metal-based catalytic systems.
Collapse
Affiliation(s)
- Sourav Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
2
|
Awal A, Islam S, Islam T, Hasan MM, Nayem SMA, James MMH, Hossain MD, Ahammad AJS. Facile Chemical Synthesis of Co-Ru-Based Heterometallic Supramolecular Polymer for Electrochemical Oxidation of Bisphenol A: Kinetics Study at the Electrode/Electrolyte Interface. ACS OMEGA 2023; 8:28355-28366. [PMID: 37576688 PMCID: PMC10413823 DOI: 10.1021/acsomega.3c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Regardless of the adverse effects of Bisphenol A (BPA), its use in industry and in day-to-day life is increasing at a higher rate every year. In the present study, a simple and reliable chemical approach was used to develop an efficient BPA sensor based on a Co-Ru-based heterometallic supramolecular polymer (polyCoRu). Surface morphology and elemental analysis were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, functional group analysis was accomplished by Fourier transform infrared spectroscopy (FT-IR). UV-vis spectroscopy was used to confirm the complexation in the ratio of 0.5:0.5:1 (metal 1/metal 2/ligand). Electrochemical characterization of the synthesized polyCoRu was conducted using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses. The study identified two distinct linear dynamic ranges for the detection of BPA, 0.197-2.94 and 3.5-17.72 μM. The regression equation was utilized to determine the sensitivity and limit of detection (LOD), resulting in values of 0.6 μA cm-2 μM-1 and 0.02 μM (S/N = 3), respectively. The kinetics of BPA oxidation at the polyCoRu/GCE were investigated to evaluate the heterogeneous rate constant (k), charge transfer coefficient (α), and the number of electrons transferred during the oxidation and rate-determining step. A probable electrochemical reaction mechanism has been presented for further comprehending the phenomena occurring at the electrode surface. The practical applicability of the fabricated electrode was analyzed using tap water, resulting in a high percentage of recovery ranging from 96 to 105%. Furthermore, the reproducibility and stability data demonstrated the excellent performance of polyCoRu/GCE.
Collapse
Affiliation(s)
- Abdul Awal
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Santa Islam
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Tamanna Islam
- Environmental
Science & Engineering Program, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Md. Mahedi Hasan
- Environmental
Science & Engineering Program, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - S. M. Abu Nayem
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | | | | | | |
Collapse
|
3
|
Haider J, Shahzadi A, Akbar MU, Hafeez I, Shahzadi I, Khalid A, Ashfaq A, Ahmad SOA, Dilpazir S, Imran M, Ikram M, Ali G, Khan M, Khan Q, Maqbool M. A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. BIOMATERIALS ADVANCES 2022; 140:213049. [PMID: 35917685 DOI: 10.1016/j.bioadv.2022.213049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The overwhelming potential of porous coordination polymers (PCP), also known as Metal-Organic Frameworks (MOFs), especially their nanostructures for various biomedical applications, have made these materials worth investigating for more applications and uses. MOFs unique structure has enabled them for most applications, particularly in biomedical and healthcare. A number of very informative review papers are available on the biomedical applications of MOFs for the reader's convenience. However, many of those reviews focus mainly on drug delivery applications, and no significant work has been reported on other MOFs for biomedical applications. This review aims to present a compact and highly informative global assessment of the recent developments in biomedical applications (excluding drug-delivery) of MOFs along with critical analysis. Researchers have recently adopted both synthetic and post-synthetic routes for the fabrication and modification of MOFs that have been discussed and analyzed. A critical review of the latest reports on the significant and exotic area of bio-sensing capabilities and applications of MOFs has been given in this study. In addition, other essential applications of MOFs, including photothermal therapy, photodynamic therapy, and antimicrobial activities, are also included. These recently grown emergent techniques and cancer treatment options have gained attention and require further investigations to achieve fruitful outcomes. MOF's role in these applications has been thoroughly discussed, along with future challenges and valuable suggestions for the research community that will help meet future demands.
Collapse
Affiliation(s)
- Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Anum Shahzadi
- Faculty of Pharmacy, The university of Lahore, Lahore, Pakistan
| | - Muhammad Usama Akbar
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - Izan Hafeez
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Iram Shahzadi
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ayesha Khalid
- Physics Department, Lahore Garrison University, Lahore, Pakistan
| | - Atif Ashfaq
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - Syed Ossama Ali Ahmad
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - S Dilpazir
- Department of Chemistry, Comsats University, 45550, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University Faisalabad, Pakpattan Road, Sahiwal, Punjab 57000, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan.
| | - Ghafar Ali
- Pakistan Institute of Nuclear Sciences and Technology, Islamabad, Pakistan
| | - Maaz Khan
- Pakistan Institute of Nuclear Sciences and Technology, Islamabad, Pakistan
| | - Qasim Khan
- Institute of Microscale Optoelectronics, Shenzhen University, Guangdong 518000, China.
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, Health Physics Program, The University of Alabama at Birmingham, USA.
| |
Collapse
|
4
|
Younis SA, Bhardwaj N, Bhardwaj SK, Kim KH, Deep A. Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213620] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Li HS, Zhang SM, Ye P, Sun T, Wang K, Zhang XQ, Li Y. Syntheses, crystal structures and photoluminescent properties of dinuclear and tetranuclear zinc complexes with 1,4-bis(2,2':6',2″-terpyridine-4'-yl)benzene. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1861602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Heng-Shi Li
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Sheng-Mei Zhang
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Ping Ye
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Tao Sun
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Kai Wang
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Xiu-Qing Zhang
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Yan Li
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| |
Collapse
|
6
|
Mondragón M, Desirena H, Moreno‐Ruiz LA, Bello‐Pérez LA. Luminescent Europium Complex‐Grafted Octenyl Succinylated Starch Nanoparticles. STARCH-STARKE 2020. [DOI: 10.1002/star.201900290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Margarita Mondragón
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)‐Unidad Oaxaca del Instituto Politécnico Nacional Hornos 1003 Sta. Cruz Xoxocotlán 71230 Santa Cruz Xoxocotlán Oaxaca Mexico
| | - Haggeo Desirena
- Centro de Investigaciones en Óptica (CIO) Lomas del Bosque 115 Lomas del Campestre León Guanajuato 37150 Mexico
| | - Luis Alberto Moreno‐Ruiz
- Centro de Nanociencias y Micro y Nanotecnologías (CNMN) del Instituto Politécnico Nacional Av. Luis Enrique Erro s/n Nueva Industrial Vallejo Cd. De México 07738 Mexico
| | - Luis Arturo Bello‐Pérez
- Centro de Desarrollo de Productos Bióticos (CEPROBI) del Instituto Politécnico Nacional Carr. Yautepec‐Jojutla km. 6 Calle CEPROBI No.8 Col. San Isidro Yautepec Morelos 62731 Mexico
| |
Collapse
|
7
|
Flexible and transparent films consisting of lanthanide complexes for ratiometric luminescence thermometry. J Colloid Interface Sci 2018; 519:11-17. [PMID: 29476838 DOI: 10.1016/j.jcis.2018.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/09/2023]
Abstract
Herein, a flexible and transparent film consisting Eu3+/Tb3+ lanthanide complexes and poly(methylmethacrylate) was constructed via solution casting method, and further developed as a ratiometric luminescent thermometer with an excellent linear response to temperature variation from 77 to 297 K. The thermometer displays higher photo- and thermostability than corresponding pure complexs. Based on that the emission intensity ratio of 5D4 → 7F5 transition (Tb3+) to 5D0 → 7F2 transition (Eu3+) can be linearly related to the temperature, the resulting thermometer is not only more reliable than single Eu3+(or Tb3+) material based on one emission, and but also has higher sensitivity than other types of luminescent thermometers. This work highlights the practical applications of luminescent films in temperature-sensing fields.
Collapse
|