1
|
Wesner A, Papajewski MP, Schidowski L, Ruhmlieb C, Poller MJ, Albert J. Supported H 8PV 5Mo 7O 40 on activated carbon: Synthesis and Investigation of influencing factors for catalytic performance. Dalton Trans 2024; 53:14065-14076. [PMID: 39113545 DOI: 10.1039/d4dt01336k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Polyoxometalates (POMs), in particular the Keggin-type HPA-5 (H8PV5Mo7O40) are widely established as effective catalysts for acid- and redox-catalyzed reactions. Yet, they are mainly used as homogeneous catalysts, which poses challenges regarding catalyst separation. This study explores the synthesis of supported HPA-5, and its application as a heterogeneous catalyst for biomass conversion, focusing on activated carbons with diverse chemical and physical properties as support materials. Characterization of these carbons gives insights into the influence of surface area, oxygen content, and acidity on HPA adsorption and stability. Activated carbon CW20, was found to be the best support due to its high vanadium loading and effective preservation of the HPA-5 structure. It underwent various pre- and post-treatments, and the obtained supported catalysts were evaluated for their catalytic performance in converting glucose under both oxidative (OxFA process) and inert (Retro-Aldol condensation) conditions. Notably, HPA-5 supported on CW20 emerged as an exceptional catalyst for the retro-aldol condensation of glucose to lactic acid, achieving a selectivity of 15% and a conversion rate of 71%, with only minimal vanadium leaching.
Collapse
Affiliation(s)
- Anne Wesner
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Max P Papajewski
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Leon Schidowski
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Charlotte Ruhmlieb
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Maximilian J Poller
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Jakob Albert
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| |
Collapse
|
2
|
Ilbeygi H, Jaafar J. Recent Progress on Functionalized Nanoporous Heteropoly Acids: From Synthesis to Applications. CHEM REC 2024; 24:e202400043. [PMID: 38874111 DOI: 10.1002/tcr.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Indexed: 06/15/2024]
Abstract
Functionalized nanoporous heteropoly acids (HPAs) have garnered significant attention in recent years due to their enhanced surface area and porosity, as well as their potential for low-cost regeneration compared to bulk materials. This review aims to provide an overview of the recent advancements in the synthesis and applications of functionalized HPAs. We begin by introducing the fundamental properties of HPAs and their unique structure, followed by a comprehensive overview of the various approaches employed for the synthesis of functionalized HPAs, including salts, anchoring onto supports, and implementing mesoporous silica sieves. The potential applications of functionalized HPAs in various fields are also discussed, highlighting their boosted performance in a wide range of applications. Finally, we address the current challenges and present future prospects in the development of functionalized HPAs, particularly in the context of mesoporous HPAs. This review aims to provide a comprehensive summary of the recent progress in the field, highlighting the significant advancements made in the synthesis and applications of functionalized HPAs.
Collapse
Affiliation(s)
- Hamid Ilbeygi
- Battery Research and Innovation Hub, Institute of Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
- ARC Research Hub for Integrated Devices for End-user Analysis at Low-levels (IDEAL), Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Juhana Jaafar
- N29a, Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
3
|
Hombach L, Simitsis N, Vossen JT, Vorholt AJ, Beine AK. Solidified and Immobilized Heteropolyacids for the Valorization of Lignocellulose. ChemCatChem 2022. [DOI: 10.1002/cctc.202101838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lea Hombach
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Solid Molecular Catalysts GERMANY
| | - Natalia Simitsis
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen ITMC GERMANY
| | - Jeroen Thomas Vossen
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Molecular Catalysis GERMANY
| | - Andreas J. Vorholt
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Molecular Catalysis GERMANY
| | - Anna Katharina Beine
- Max-Planck-Institut fur chemische Energiekonversion solid molecular catalysts Stiftstr. 36-38 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
4
|
Construction and Aromatization of Hantzsch 1,4‐Dihydropyridines under Microwave Irradiation: A Green Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202104032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Dong H, Li W, Ou Y, Gao D, Yang Y, Zhang Y, Xiao P. Self-Assembly Hydrothermal Synthesis of Silverton-Type Polyoxometalate-Based Photocatalysts for Enhanced Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4454-4464. [PMID: 32281378 DOI: 10.1021/acs.langmuir.9b03721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The synthesis of some complex polyoxometalates (POMs) is critical to develop potential photocatalysts with high catalytic activity and selectivity. Here, we address this challenge by a hydrothermal self-assembly route to obtain a novel POM-based Co4W6O21(OH)2·4H2O with a hierarchical microsphere structure. The Co4W6O21(OH)2·4H2O crystallizes in the cubic space group Im3̅ with cell parameters: a = b = c = 12.878 Å, α = β = γ = 90°, and Z = 4. The structure is further characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectra. After depositing Ag2O nanoparticles on the 3D Co4W6O21(OH)2·4H2O microsphere by photochemical synthesis, the Co4W6O21(OH)2·4H2O/Ag2O heterojunction presents enhanced photocatalytic activity for RhB compared with P25 and pristine Ag2O. Moreover, we confirm the key role of holes for the Co4W6O21(OH)2·4H2O/Ag2O and put forward a possible mechanism for the photocatalytic degradation reaction.
Collapse
Affiliation(s)
- Hongmei Dong
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wenhui Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yingqing Ou
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Di Gao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yibin Yang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400030, China
| | - Yunhuai Zhang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Peng Xiao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400030, China
| |
Collapse
|
6
|
Proton-Enhanced Dielectric Properties of Polyoxometalates in Water under Radio-Frequency Electromagnetic Waves. MATERIALS 2018; 11:ma11071202. [PMID: 30011791 PMCID: PMC6073116 DOI: 10.3390/ma11071202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
Abstract
Electromagnetic waves, such as microwaves, have been used to enhance various chemical reactions over polyoxometalates. The dielectric properties of catalysts are among the relevant parameters facilitating catalytic reactions under electromagnetic radiation. This study describes the dielectric properties of polyoxometalate catalysts in aqueous and organic solutions to understand the mechanism of interactions between polyoxometalates and electromagnetic waves. Specific loss factors of polyoxometalates were observed at lower frequencies (<1 GHz) by the ionic conduction of the polyoxometalate solution. The evolution of ionic conduction depended strongly on cations rather than anions. Proton-type polyoxometalates exhibited significantly higher loss factors than other cations did. The activation energy for ionic conduction in protonated silicotungstic acid (H4SiW12O40) was significantly low in water (7.6–14.1 kJ/mol); therefore, the high loss factor of protonated polyoxometalates in water was attributed to the proton relay mechanism (i.e., Grotthuss mechanism). The results suggested that the proton relay mechanism at the radio-frequency band is critical for generating selective interactions of polyoxometalates with applied electromagnetic fields.
Collapse
|
7
|
Priecel P, Perez Mejia JE, Carà PD, Lopez-Sanchez JA. Microwaves in the Catalytic Valorisation of Biomass Derivatives. SUSTAINABLE CATALYSIS FOR BIOREFINERIES 2018. [DOI: 10.1039/9781788013567-00243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The application of microwave irradiation in the transformation of biomass has been receiving particular interest in recent years due to the use of polar media in such processes and it is now well-known that for biomass conversion, and particularly for lignocellulose hydrolysis, microwave irradiation can dramatically increase reaction rates with no negative consequences on product selectivity. However, it is only in the last ten years that the utilisation of microwaves has been coupled with catalysis aiming towards valorising biomass components or their derivatives via a range of reactions where high selectivity is required in addition to enhanced conversions. The reduced reaction times and superior yields are particularly attractive as they might facilitate the transition towards flow reactors and intensified production. As a consequence, several reports now describe the catalytic transformation of biomass derivatives via hydrogenation, oxidation, dehydration, esterification and transesterification using microwaves. Clearly, this technology has a huge potential for biomass conversion towards chemicals and fuels and will be an important tool within the biorefinery toolkit. The aim of this chapter is to give the reader an overview of the exciting scientific work carried out to date where microwave reactors and catalysis are combined in the transformation of biomass and its derivatives to higher value molecules and products.
Collapse
Affiliation(s)
- Peter Priecel
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Javier Eduardo Perez Mejia
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Piera Demma Carà
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
- MicroBioRefinery Facility, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Jose A. Lopez-Sanchez
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
- MicroBioRefinery Facility, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| |
Collapse
|
8
|
Kishimoto F, Leong KH, Kawamura S, Haneishi N, Tsubaki S, Wada Y. Acceleration of Water Electrolysis by Accumulation of Microwave Energy at a Pt Disk Electrode. CHEM LETT 2017. [DOI: 10.1246/cl.170686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fuminao Kishimoto
- Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-E4-3 Ookayama, Meguro, Tokyo 152-8552
| | - Kah Hon Leong
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Shinichiro Kawamura
- Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-E4-3 Ookayama, Meguro, Tokyo 152-8552
| | - Naoto Haneishi
- Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-E4-3 Ookayama, Meguro, Tokyo 152-8552
| | - Shuntaro Tsubaki
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-3 Ookayama, Meguro, Tokyo 152-8552
| | - Yuji Wada
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-3 Ookayama, Meguro, Tokyo 152-8552
| |
Collapse
|