1
|
Tjallinks G, Mattevi A, Fraaije MW. Biosynthetic Strategies of Berberine Bridge Enzyme-like Flavoprotein Oxidases toward Structural Diversification in Natural Product Biosynthesis. Biochemistry 2024; 63:2089-2110. [PMID: 39133819 PMCID: PMC11375781 DOI: 10.1021/acs.biochem.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Berberine bridge enzyme-like oxidases are often involved in natural product biosynthesis and are seen as essential enzymes for the generation of intricate pharmacophores. These oxidases have the ability to transfer a hydride atom to the FAD cofactor, which enables complex substrate modifications and rearrangements including (intramolecular) cyclizations, carbon-carbon bond formations, and nucleophilic additions. Despite the diverse range of activities, the mechanistic details of these reactions often remain incompletely understood. In this Review, we delve into the complexity that BBE-like oxidases from bacteria, fungal, and plant origins exhibit by providing an overview of the shared catalytic features and emphasizing the different reactivities. We propose four generalized modes of action by which BBE-like oxidases enable the synthesis of natural products, ranging from the classic alcohol oxidation reactions to less common amine and amide oxidation reactions. Exploring the mechanisms utilized by nature to produce its vast array of natural products is a subject of considerable interest and can lead to the discovery of unique biochemical activities.
Collapse
Affiliation(s)
- Gwen Tjallinks
- Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Groningen 9747 AG, The Netherlands
- Department
of Biology and Biotechnology, University
of Pavia, Pavia 27100, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University
of Pavia, Pavia 27100, Italy
| | - Marco W. Fraaije
- Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
2
|
WANG M, ZHANG W, WANG N. Covalent flavoproteins: types, occurrence, biogenesis and catalytic mechanisms. Chin J Nat Med 2022; 20:749-760. [DOI: 10.1016/s1875-5364(22)60194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Indexed: 11/03/2022]
|
3
|
Structural studies reveal flexible roof of active site responsible for ω-transaminase CrmG overcoming by-product inhibition. Commun Biol 2020; 3:455. [PMID: 32814814 PMCID: PMC7438487 DOI: 10.1038/s42003-020-01184-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Amine compounds biosynthesis using ω-transaminases has received considerable attention in the pharmaceutical industry. However, the application of ω-transaminases was hampered by the fundamental challenge of severe by-product inhibition. Here, we report that ω-transaminase CrmG from Actinoalloteichus cyanogriseus WH1-2216-6 is insensitive to inhibition from by-product α-ketoglutarate or pyruvate. Combined with structural and QM/MM studies, we establish the detailed catalytic mechanism for CrmG. Our structural and biochemical studies reveal that the roof of the active site in PMP-bound CrmG is flexible, which will facilitate the PMP or by-product to dissociate from PMP-bound CrmG. Our results also show that amino acceptor caerulomycin M (CRM M), but not α-ketoglutarate or pyruvate, can form strong interactions with the roof of the active site in PMP-bound CrmG. Based on our results, we propose that the flexible roof of the active site in PMP-bound CrmG may facilitate CrmG to overcome inhibition from the by-product.
Collapse
|
4
|
Xie Y, Chen J, Wang B, Chen T, Chen J, Zhang Y, Liu X, Chen Q. Activation and enhancement of caerulomycin A biosynthesis in marine-derived Actinoalloteichus sp. AHMU CJ021 by combinatorial genome mining strategies. Microb Cell Fact 2020; 19:159. [PMID: 32762690 PMCID: PMC7412835 DOI: 10.1186/s12934-020-01418-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background Activation of silent biosynthetic gene clusters (BGCs) in marine-derived actinomycete strains is a feasible strategy to discover bioactive natural products. Actinoalloteichus sp. AHMU CJ021, isolated from the seashore, was shown to contain an intact but silent caerulomycin A (CRM A) BGC-cam in its genome. Thus, a genome mining work was preformed to activate the strain’s production of CRM A, an immunosuppressive drug lead with diverse bioactivities. Results To well activate the expression of cam, ribosome engineering was adopted to treat the wild type Actinoalloteichus sp. AHMU CJ021. The initial mutant strain XC-11G with gentamycin resistance and CRM A production titer of 42.51 ± 4.22 mg/L was selected from all generated mutant strains by gene expression comparison of the essential biosynthetic gene-camE. The titer of CRM A production was then improved by two strain breeding methods via UV mutagenesis and cofactor engineering-directed increase of intracellular riboflavin, which finally generated the optimal mutant strain XC-11GUR with a CRM A production titer of 113.91 ± 7.58 mg/L. Subsequently, this titer of strain XC-11GUR was improved to 618.61 ± 16.29 mg/L through medium optimization together with further adjustment derived from response surface methodology. In terms of this 14.6 folds increase in the titer of CRM A compared to the initial value, strain XC-GUR could be a well alternative strain for CRM A development. Conclusions Our results had constructed an ideal CRM A producer. More importantly, our efforts also had demonstrated the effectiveness of abovementioned combinatorial strategies, which is applicable to the genome mining of bioactive natural products from abundant actinomycetes strains.
Collapse
Affiliation(s)
- Yunchang Xie
- Key Laboratory of Functional Small Organic Molecule Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jiawen Chen
- Key Laboratory of Functional Small Organic Molecule Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Bo Wang
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen, 518120, China
| | - Tai Chen
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen, 518120, China
| | - Junyu Chen
- Key Laboratory of Functional Small Organic Molecule Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Yuan Zhang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Qi Chen
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
5
|
Zhang H, Lan M, Cui G, Zhu W. The Influence of Caerulomycin A on the Intestinal Microbiota in SD Rats. Mar Drugs 2020; 18:md18050277. [PMID: 32456087 PMCID: PMC7281470 DOI: 10.3390/md18050277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 01/14/2023] Open
Abstract
Caerulomycin A (CRM A) is the first example of natural caerulomycins with a 2,2'-bipyridyl ring core and 6-aldoxime functional group from Streptomyces caeruleus and recently from marine-derived Actinoalloteichus cyanogriseus WH1-2216-6. Our previous study revealed that CRM A showed anti-tumor activity against human colorectal cancer (CRC) both in vitro and in vivo. Because some intestinal flora can affect the occurrence and development of CRC, the influence of CRM A on the intestinal flora is worthy of study in Sprague-Dawley (SD) rats. The high throughput sequencing of the V3-V4 hypervariable region in bacterial 16S rDNA gene results showed that the CRM A affected the diversity of intestinal flora of the SD rats treated with CRM A for 2, 3 and 4 weeks. Further analysis indicated that the abundance of genera Prevotella_1, Prevotellaceae_UCG-001, and Lactobacillus were increased while the that of genera Alloprevotella and Ruminiclostridium_1 were decreased. For the CRC related intestinal flora, the abundance of genera Bacteroides, Fusobacterium, Enterococcus, Escherichia-Shigella, Klebsiella, Streptococcus, Ruminococcus_2, and Peptococcus of SD rats treated with CRM A were decreased, while that of abundance of genera Bifidobacterium, Lactobacillus, Faecalibacterium, Blautia, Oscillibacter, and Clostridium were increased. The results indicated that CRM A could influence the intestinal flora by inhibiting some species of harmful flora and improving the beneficial bacteria in intestinal flora in the SD rats. The results may provide a new idea for revealing the mechanism of the anti-CRC activity of CRM A.
Collapse
Affiliation(s)
- Hongwei Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.Z.); (M.L.); (G.C.)
| | - Mengmeng Lan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.Z.); (M.L.); (G.C.)
| | - Guodong Cui
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.Z.); (M.L.); (G.C.)
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.Z.); (M.L.); (G.C.)
- Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
- Correspondence: ; Tel.: +86-532-8203-1268
| |
Collapse
|
6
|
Cancela L, Esteruelas MA, López AM, Oliván M, Oñate E, San-Torcuato A, Vélez A. Osmium- and Iridium-Promoted C–H Bond Activation of 2,2′-Bipyridines and Related Heterocycles: Kinetic and Thermodynamic Preferences. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lara Cancela
- Departamento de Quı́mica Inorgánica-Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH)-Centro de Innovación en Quı́mica Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Quı́mica Inorgánica-Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH)-Centro de Innovación en Quı́mica Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Ana M. López
- Departamento de Quı́mica Inorgánica-Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH)-Centro de Innovación en Quı́mica Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Quı́mica Inorgánica-Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH)-Centro de Innovación en Quı́mica Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Quı́mica Inorgánica-Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH)-Centro de Innovación en Quı́mica Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Ainhoa San-Torcuato
- Departamento de Quı́mica Inorgánica-Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH)-Centro de Innovación en Quı́mica Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Andrea Vélez
- Departamento de Quı́mica Inorgánica-Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH)-Centro de Innovación en Quı́mica Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Manenda MS, Picard MÈ, Zhang L, Cyr N, Zhu X, Barma J, Pascal JM, Couture M, Zhang C, Shi R. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations. J Biol Chem 2020; 295:4709-4722. [PMID: 32111738 DOI: 10.1074/jbc.ra119.011212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/26/2020] [Indexed: 02/02/2023] Open
Abstract
Group A flavin-dependent monooxygenases catalyze the cleavage of the oxygen-oxygen bond of dioxygen, followed by the incorporation of one oxygen atom into the substrate molecule with the aid of NADPH and FAD. These flavoenzymes play an important role in many biological processes, and their most distinct structural feature is the choreographed motions of flavin, which typically adopts two distinct conformations (OUT and IN) to fulfill its function. Notably, these enzymes seem to have evolved a delicate control system to avoid the futile cycle of NADPH oxidation and FAD reduction in the absence of substrate, but the molecular basis of this system remains elusive. Using protein crystallography, size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), and small-angle X-ray scattering (SEC-SAXS) and activity assay, we report here a structural and biochemical characterization of PieE, a member of the Group A flavin-dependent monooxygenases involved in the biosynthesis of the antibiotic piericidin A1. This analysis revealed that PieE forms a unique hexamer. Moreover, we found, to the best of our knowledge for the first time, that in addition to the classical OUT and IN conformations, FAD possesses a "sliding" conformation that exists in between the OUT and IN conformations. This observation sheds light on the underlying mechanism of how the signal of substrate binding is transmitted to the FAD-binding site to efficiently initiate NADPH binding and FAD reduction. Our findings bridge a gap currently missing in the orchestrated order of chemical events catalyzed by this important class of enzymes.
Collapse
Affiliation(s)
- Mahder S Manenda
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Marie-Ève Picard
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Normand Cyr
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Xiaojun Zhu
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Julie Barma
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - John M Pascal
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Manon Couture
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Rong Shi
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada .,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
8
|
Mei X, Lan M, Cui G, Zhang H, Zhu W. Caerulomycins from Actinoalloteichus cyanogriseus WH1-2216-6: isolation, identification and cytotoxicity. Org Chem Front 2019. [DOI: 10.1039/c9qo00685k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SAR study of 42 caerulomycins from A. cyanogriseus revealed that 6-aldoxime and 4-O-glycosidation are respectively essential for their activity and selectivity.
Collapse
Affiliation(s)
- Xiangui Mei
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| | - Mengmeng Lan
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| | - Guodong Cui
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| | - Hongwei Zhang
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| | - Weiming Zhu
- Key Laboratory of Marine Drugs
- Ministry of Education of China
- School of Medicine and Pharmacy
- Ocean University of China
- 5# Yushan Road
| |
Collapse
|
9
|
Discovery of caerulomycin/collismycin-type 2,2'-bipyridine natural products in the genomic era. J Ind Microbiol Biotechnol 2018; 46:459-468. [PMID: 30484122 DOI: 10.1007/s10295-018-2092-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/15/2018] [Indexed: 10/27/2022]
Abstract
2,2'-Bipyridine (2,2'-BP) is the unique molecular scaffold of the bioactive natural products represented by caerulomycins (CAEs) and collismycins (COLs). CAEs and COLs are highly similar in the chemical structures in which their 2,2'-BP cores typically contain a di- or tri-substituted ring A and an unmodified ring B. Here, we summarize the CAE and COL-type 2,2'-BP natural products known or hypothesized to date: (1) isolated using methods traditional for natural product characterization, (2) created by engineering the biosynthetic pathways of CAEs or COLs, and (3) predicted upon bioinformatics-guided genome mining. The identification of these CAE and COL-type 2,2'-BP natural products not only demonstrates the development of research techniques and methods in the field of natural product chemistry but also reflects the general interest in the discovery of CAE and COL-type 2,2'-BP natural products.
Collapse
|
10
|
Chen M, Zhang Y, Du Y, Zhao Q, Zhang Q, Wu J, Liu W. Enzymatic competition and cooperation branch the caerulomycin biosynthetic pathway toward different 2,2'-bipyridine members. Org Biomol Chem 2018. [PMID: 28649680 DOI: 10.1039/c7ob01284e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we characterized CaeB6 as a selective hydroxylase and CaeG1 as an O-methyltransferase in the biosynthesis of the 2,2'-bipyridine natural products caerulomycins (CAEs). The C3-hydroxylation activity of CaeB6 competes with the C4-O-methylation activity of CaeG1 and thereby branches the CAE pathway from a common C4-O-demethylated 2,2'-bipyridine intermediate. CaeG1-catalyzed C4-O-methylation leads to a main route that produces the major product CAE-A in Actinoalloteichus cyanogriseus NRRL B-2194. In contrast, CaeB6-catalyzed C3-hydroxylation results in a shunt route in which CaeG1 causes C4-O-methylation and subsequent C3-O-methylation to produce a series of minor CAE products. These findings provide new insights into the biosynthetic pathway of CAEs and a synthetic biology strategy for the selective functionalization of the 2,2'-bipyridine core.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Bioorganic and Nature Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ewing TA, Fraaije MW, Mattevi A, van Berkel WJ. The VAO/PCMH flavoprotein family. Arch Biochem Biophys 2017; 632:104-117. [DOI: 10.1016/j.abb.2017.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 01/15/2023]
|
12
|
Song LQ, Zhang YY, Pu JY, Tang MC, Peng C, Tang GL. Catalysis of Extracellular Deamination by a FAD-Linked Oxidoreductase after Prodrug Maturation in the Biosynthesis of Saframycin A. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li-Qiang Song
- Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences (CAS); Shanghai 200032 China
| | - Ying-Ying Zhang
- Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences (CAS); Shanghai 200032 China
| | - Jin-Yue Pu
- Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences (CAS); Shanghai 200032 China
| | - Man-Cheng Tang
- Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences (CAS); Shanghai 200032 China
| | - Chao Peng
- National Center for Protein Science (Shanghai); Institute of Biochemistry and Cell Biology; Shanghai Institutes for Biological Sciences, CAS; Shanghai 200031 China
| | - Gong-Li Tang
- Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences (CAS); Shanghai 200032 China
| |
Collapse
|
13
|
Song LQ, Zhang YY, Pu JY, Tang MC, Peng C, Tang GL. Catalysis of Extracellular Deamination by a FAD-Linked Oxidoreductase after Prodrug Maturation in the Biosynthesis of Saframycin A. Angew Chem Int Ed Engl 2017; 56:9116-9120. [PMID: 28561936 DOI: 10.1002/anie.201704726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 12/28/2022]
Abstract
The biosynthesis of antibiotics in bacteria is usually believed to be an intracellular process, at the end of which the matured compounds are exported outside the cells. The biosynthesis of saframycin A (SFM-A), an antitumor antibiotic, requires a cryptic fatty acyl chain to guide the construction of a pentacyclic tetrahydroisoquinoline scaffold; however, the follow-up deacylation and deamination steps remain unknown. Herein we demonstrate that SfmE, a membrane-bound peptidase, hydrolyzes the fatty acyl chain to release the amino group; and SfmCy2, a secreted oxidoreductase covalently associated with FAD, subsequently performs an oxidative deamination extracellularly. These results not only fill in the missing steps of SFM-A biosynthesis, but also reveal that a FAD-binding oxidoreductase catalyzes an unexpected deamination reaction through an unconventional extracellular pathway in Streptmyces bacteria.
Collapse
Affiliation(s)
- Li-Qiang Song
- Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Ying-Ying Zhang
- Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Jin-Yue Pu
- Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Man-Cheng Tang
- Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Chao Peng
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China
| | - Gong-Li Tang
- Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| |
Collapse
|