1
|
Alcón I, Ribas-Ariño J, Moreira IDPR, Bromley ST. Emergent Spin Frustration in Neutral Mixed-Valence 2D Conjugated Polymers: A Potential Quantum Materials Platform. J Am Chem Soc 2023; 145:5674-5683. [PMID: 36877195 PMCID: PMC10021012 DOI: 10.1021/jacs.2c11185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Two-dimensional conjugated polymers (2DCPs)─organic 2D materials composed of arrays of carbon sp2 centers connected by π-conjugated linkers─are attracting increasing attention due to their potential applications in device technologies. This interest stems from the ability of 2DCPs to host a range of correlated electronic and magnetic states (e.g., Mott insulators). Substitution of all carbon sp2 centers in 2DCPs by nitrogen or boron results in diamagnetic insulating states. Partial substitution of C sp2 centers by B or N atoms has not yet been considered for extended 2DCPs but has been extensively studied in the analogous neutral mixed-valence molecular systems. Here, we employ accurate first-principles calculations to predict the electronic and magnetic properties of a new class of hexagonally connected neutral mixed-valence 2DCPs in which every other C sp2 nodal center is substituted by either a N or B atom. We show that these neutral mixed-valence 2DCPs significantly energetically favor a state with emergent superexchange-mediated antiferromagnetic (AFM) interactions between C-based spin-1/2 centers on a triangular sublattice. These AFM interactions are surprisingly strong and comparable to those in the parent compounds of cuprate superconductors. The rigid and covalently linked symmetric triangular AFM lattice in these materials thus provides a highly promising and robust basis for 2D spin frustration. As such, extended mixed-valence 2DCPs are a highly attractive platform for the future bottom-up realization of a new class of all-organic quantum materials, which could host exotic correlated electronic states (e.g., unusual magnetic ordering, quantum spin liquids).
Collapse
Affiliation(s)
- Isaac Alcón
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jordi Ribas-Ariño
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ibério de P R Moreira
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Stefan T Bromley
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
2
|
Alcón I, Calogero G, Papior N, Antidormi A, Song K, Cummings AW, Brandbyge M, Roche S. Unveiling the Multiradical Character of the Biphenylene Network and Its Anisotropic Charge Transport. J Am Chem Soc 2022; 144:8278-8285. [PMID: 35476458 PMCID: PMC9100647 DOI: 10.1021/jacs.2c02178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent progress in the on-surface synthesis and characterization of nanomaterials is facilitating the realization of new carbon allotropes, such as nanoporous graphenes, graphynes, and 2D π-conjugated polymers. One of the latest examples is the biphenylene network (BPN), which was recently fabricated on gold and characterized with atomic precision. This gapless 2D organic material presents uncommon metallic conduction, which could help develop innovative carbon-based electronics. Here, using first principles calculations and quantum transport simulations, we provide new insights into some fundamental properties of BPN, which are key for its further technological exploitation. We predict that BPN hosts an unprecedented spin-polarized multiradical ground state, which has important implications for the chemical reactivity of the 2D material under practical use conditions. The associated electronic band gap is highly sensitive to perturbations, as seen in finite temperature (300 K) molecular dynamics simulations, but the multiradical character remains stable. Furthermore, BPN is found to host in-plane anisotropic (spin-polarized) electrical transport, rooted in its intrinsic structural features, which suggests potential device functionality of interest for both nanoelectronics and spintronics.
Collapse
Affiliation(s)
- Isaac Alcón
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain.,Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Gaetano Calogero
- CNR Institute for Microelectronics and Microsystems (CNR-IMM), Zona Industriale, Strada VIII, 5, Catania 95121, Italy
| | - Nick Papior
- Computing Center, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Aleandro Antidormi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Kenan Song
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Aron W Cummings
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Mads Brandbyge
- Department of Physics, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.,Center for Nanostructured Graphene (CNG), Kongens Lyngby DK-2800, Denmark
| | - Stephan Roche
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain.,ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08070, Spain
| |
Collapse
|
3
|
Alcón I, Shao J, Tremblay JC, Paulus B. Conformational control over π-conjugated electron pairing in 1D organic polymers. RSC Adv 2021; 11:20498-20506. [PMID: 35479909 PMCID: PMC9033971 DOI: 10.1039/d1ra03187b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
During the past decades π-conjugated bi-radicals have attracted increasing attention, due to the existence of two close-in-energy resonant electronic configurations with very distinct characteristics: the open-shell bi-radical and the closed-shell quinoidal. The chemical design of the bi-radical structure has been shown to be very effective to shift the balance towards one, or the other, electronic distribution. Some reports have experimentally studied the analogous 1D oligomers and polymers, however, only the open-shell multi-radical configuration has been detected, and it is yet not very clear which structural and chemical parameters are relevant in such extended systems. In this work, via first principles quantum chemical simulations, we study a series of π-conjugated 1D polymers based on triarylmethyl radicals with different chemical functionalization. We find that dihedral angles of the aryl rings connecting the radical centres are the key conformational parameter determining the electronic balance. This provides a simple recipe to use chemical functionalization of aryl rings as a tool to shift the system towards either the electron paired or unpaired configurations. Additionally, we find such conformational control is also effective under the effect of thermal fluctuations, which highlights its potential technological applicability.
Collapse
Affiliation(s)
- Isaac Alcón
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Jingjing Shao
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | | | - Beate Paulus
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| |
Collapse
|
4
|
Madajczyk K, Żuchowski PS, Brzȩk F, Rajchel Ł, Kȩdziera D, Modrzejewski M, Hapka M. Dataset of noncovalent intermolecular interaction energy curves for 24 small high-spin open-shell dimers. J Chem Phys 2021; 154:134106. [PMID: 33832261 DOI: 10.1063/5.0043793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a dataset of 24 interaction energy curves of open-shell noncovalent dimers, referred to as the O24 × 5 dataset. The dataset consists of high-spin dimers up to 11 atoms selected to assure diversity with respect to interaction types: dispersion, electrostatics, and induction. The benchmark interaction energies are obtained at the restricted open-shell CCSD(T) level of theory with complete basis set extrapolation (from aug-cc-pVQZ to aug-cc-pV5Z). We have analyzed the performance of selected wave function methods MP2, CCSD, and CCSD(T) as well as the F12a and F12b variants of coupled-cluster theory. In addition, we have tested dispersion-corrected density functional theory methods based on the PBE exchange-correlation model. The O24 × 5 dataset is a challenge to approximate methods due to the wide range of interaction energy strengths it spans. For the dispersion-dominated and mixed-type subsets, any tested method that does not include the triples contribution yields errors on the order of tens of percent. The electrostatic subset is less demanding with errors that are typically an order of magnitude smaller than the mixed and dispersion-dominated subsets.
Collapse
Affiliation(s)
- Katarzyna Madajczyk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Piotr S Żuchowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Filip Brzȩk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Łukasz Rajchel
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Dariusz Kȩdziera
- Faculty of Chemistry, Nicolaus Copernicus University, ul. Gagarina 7, Toruń, Poland
| | - Marcin Modrzejewski
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Hapka
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Alcón I, Santiago R, Ribas-Arino J, Deumal M, Moreira IDPR, Bromley ST. Controlling pairing of π-conjugated electrons in 2D covalent organic radical frameworks via in-plane strain. Nat Commun 2021; 12:1705. [PMID: 33731706 PMCID: PMC7969611 DOI: 10.1038/s41467-021-21885-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/17/2021] [Indexed: 11/14/2022] Open
Abstract
Controlling the electronic states of molecules is a fundamental challenge for future sub-nanoscale device technologies. π-conjugated bi-radicals are very attractive systems in this respect as they possess two energetically close, but optically and magnetically distinct, electronic states: the open-shell antiferromagnetic/paramagnetic and the closed-shell quinoidal diamagnetic states. While it has been shown that it is possible to statically induce one electronic ground state or the other by chemical design, the external dynamical control of these states in a rapid and reproducible manner still awaits experimental realization. Here, via quantum chemical calculations, we demonstrate that in-plane uniaxial strain of 2D covalently linked arrays of radical units leads to smooth and reversible conformational changes at the molecular scale that, in turn, induce robust transitions between the two kinds of electronic distributions. Our results pave a general route towards the external control, and thus technological exploitation, of molecular-scale electronic states in organic 2D materials. Controlling the electronic states of molecules is a fundamental challenge for future sub-nanoscale device technologies but the external dynamical control of these states still awaits experimental realization. Here, via quantum chemical calculations, the authors demonstrate that in-plane uniaxial strain of 2D covalently linked arrays of radical units induces controlled pairing of π-conjugated electrons in a reversible way.
Collapse
Affiliation(s)
- Isaac Alcón
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Berlin, Germany.
| | - Raúl Santiago
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Jordi Ribas-Arino
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Mercè Deumal
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Ibério de P R Moreira
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Stefan T Bromley
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
6
|
Jutglar Lozano K, Santiago R, Ribas-Arino J, Bromley ST. Twistable dipolar aryl rings as electric field actuated conformational molecular switches. Phys Chem Chem Phys 2021; 23:3844-3855. [PMID: 33537689 DOI: 10.1039/d0cp06549h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to control the chemical conformation of a system via external stimuli is a promising route for developing molecular switches. For eventual deployment as viable sub-nanoscale components that are compatible with current electronic device technology, conformational switching should be controllable by a local electric field (i.e. E-field gateable) and accompanied by a rapid and significant change in conductivity. In organic chemical systems the degree of π-conjugation is linked to the degree of electronic delocalisation, and thus largely determines the conductivity. Here, by means of accurate first principles calculations, we study the prototypical biphenyl based molecular system in which the dihedral angle between the two rings determines the degree of conjugation. In order to make this an E-field gateable system we create a net dipole by asymmetrically functionalising one ring with: (i) electron withdrawing (F, Br and CN), (ii) electron donating (NH2), and (iii) mixed (NH2/NO2) substituents. In this way, the application of an E-field interacts with the dipolar system to influence the dihedral angle, thus controlling the conjugation. For all considered substituents we consider a range of E-fields, and in each case extract conformational energy profiles. Using this data we obtain the minimum E-field required to induce a barrierless switching event for each system. We further extract the estimated switching speeds, the conformational probabilities at finite temperatures, and the effect of applied E-field on electronic structure. Consideration of these data allow us to assess which factors are most important in the design of efficient gateable electrical molecular switches.
Collapse
Affiliation(s)
- Kílian Jutglar Lozano
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computatcional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Raul Santiago
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computatcional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Jordi Ribas-Arino
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computatcional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Stefan T Bromley
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computatcional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Wu S, Li M, Phan H, Wang D, Herng TS, Ding J, Lu Z, Wu J. Toward Two‐Dimensional π‐Conjugated Covalent Organic Radical Frameworks. Angew Chem Int Ed Engl 2018; 57:8007-8011. [DOI: 10.1002/anie.201801998] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/25/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Shaofei Wu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Minchan Li
- Department of Materials Science and EngineeringSouthern University of Science and Technology 518055 Shenzhen China
| | - Hoa Phan
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Dingguan Wang
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Tun Seng Herng
- Department of Materials Science and EngineeringNational University of Singapore 119260 Singapore Singapore
| | - Jun Ding
- Department of Materials Science and EngineeringNational University of Singapore 119260 Singapore Singapore
| | - Zhouguang Lu
- Department of Materials Science and EngineeringSouthern University of Science and Technology 518055 Shenzhen China
| | - Jishan Wu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
8
|
Wu S, Li M, Phan H, Wang D, Herng TS, Ding J, Lu Z, Wu J. Toward Two‐Dimensional π‐Conjugated Covalent Organic Radical Frameworks. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801998] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shaofei Wu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Minchan Li
- Department of Materials Science and EngineeringSouthern University of Science and Technology 518055 Shenzhen China
| | - Hoa Phan
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Dingguan Wang
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Tun Seng Herng
- Department of Materials Science and EngineeringNational University of Singapore 119260 Singapore Singapore
| | - Jun Ding
- Department of Materials Science and EngineeringNational University of Singapore 119260 Singapore Singapore
| | - Zhouguang Lu
- Department of Materials Science and EngineeringSouthern University of Science and Technology 518055 Shenzhen China
| | - Jishan Wu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
9
|
Alcón I, Bromley ST. Triarylmethyl-based 2D covalent networks: virtual screening of chemical functionalisation for optimising strain-induced property control. Phys Chem Chem Phys 2018; 20:5028-5035. [PMID: 29388643 DOI: 10.1039/c7cp08076j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional covalent networks based on triarylmethyl (TAM) radical monomers have been proposed as versatile materials whose unpaired electrons may be externally localised/delocalised through the application of external uniaxial strain. This phenomenon arises through the strain-induced variance of the dihedral twist angles of the aryl rings within the network, and allows the control of important physico-chemical properties (e.g. magnetic interactions, electronic band gap). In order to experimentally realise such materials, one must find a compromise between the kinetic stability of the TAM monomers (through sterically protecting the radical centre with the appropriate aryl ring functionalisation) and the structural flexibility of the resulting material (provided by low intra-ring steric hindrance). In this work, through an efficient search procedure based on force field-based screening, employing ∼1750 calculations, followed by selected accurate electronic structure calculations, we provide support for the experimental viability of TAM-based 2D networks with highly controllable properties.
Collapse
Affiliation(s)
- I Alcón
- Department de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional, Universitat de Barcelona, C/Martí i Franquès 1, E-08028 Barcelona, Spain.
| | | |
Collapse
|
10
|
Gourlaouen C, Vela S, Choua S, Berville M, Wytko JA, Weiss J, Robert V. Pairing-up viologen cations and dications: a microscopic investigation of van der Waals interactions. Phys Chem Chem Phys 2018; 20:27878-27884. [DOI: 10.1039/c8cp04543g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polarizability and simultaneous environment effects overcome Coulomb repulsions.
Collapse
Affiliation(s)
- Christophe Gourlaouen
- Laboratoire de Chimie Quantique
- UMR 7111
- CNRS-Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Sergi Vela
- Laboratoire de Chimie Quantique
- UMR 7111
- CNRS-Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Sylvie Choua
- Laboratoire de Propriétés Optiques et Magnétiques des Architectures Moléculaires
- UMR 7111
- CNRS-Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Mathilde Berville
- Laboratoire de Chimie des Ligands à Architecture Contrôlée
- UMR 7111
- CNRS-Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Jennifer A. Wytko
- Laboratoire de Chimie des Ligands à Architecture Contrôlée
- UMR 7111
- CNRS-Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Jean Weiss
- Laboratoire de Chimie des Ligands à Architecture Contrôlée
- UMR 7111
- CNRS-Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Vincent Robert
- Laboratoire de Chimie Quantique
- UMR 7111
- CNRS-Université de Strasbourg
- F-67000 Strasbourg
- France
| |
Collapse
|
11
|
Yang Y, Liu C, Xu X, Meng Z, Tong W, Ma Z, Zhou C, Sun Y, Sheng Z. Antiferromagnetism in two-dimensional polyradical nanosheets. Polym Chem 2018. [DOI: 10.1039/c8py01287c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D polyradical nanosheets were prepared using interfacial polymerization and exhibited obvious antiferromagnetic behavior.
Collapse
Affiliation(s)
- Yang Yang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions
- High Magnetic Field Laboratory
- Chinese Academy of Science
- Hefei
- China
| | - Caixing Liu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions
- High Magnetic Field Laboratory
- Chinese Academy of Science
- Hefei
- China
| | - Xueli Xu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions
- High Magnetic Field Laboratory
- Chinese Academy of Science
- Hefei
- China
| | - Zhi Meng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions
- High Magnetic Field Laboratory
- Chinese Academy of Science
- Hefei
- China
| | - Wei Tong
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions
- High Magnetic Field Laboratory
- Chinese Academy of Science
- Hefei
- China
| | - Zongwei Ma
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions
- High Magnetic Field Laboratory
- Chinese Academy of Science
- Hefei
- China
| | - Chun Zhou
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions
- High Magnetic Field Laboratory
- Chinese Academy of Science
- Hefei
- China
| | - Yuping Sun
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions
- High Magnetic Field Laboratory
- Chinese Academy of Science
- Hefei
- China
| | - Zhigao Sheng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions
- High Magnetic Field Laboratory
- Chinese Academy of Science
- Hefei
- China
| |
Collapse
|
12
|
Alcón I, Viñes F, Moreira IDPR, Bromley ST. Existence of multi-radical and closed-shell semiconducting states in post-graphene organic Dirac materials. Nat Commun 2017; 8:1957. [PMID: 29208895 PMCID: PMC5717056 DOI: 10.1038/s41467-017-01977-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022] Open
Abstract
Post-graphene organic Dirac (PGOD) materials are ordered two-dimensional networks of triply bonded sp 2 carbon nodes spaced by π-conjugated linkers. PGOD materials are natural chemical extensions of graphene that promise to have an enhanced range of properties and applications. Experimentally realised molecules based on two PGOD nodes exhibit a bi-stable closed-shell/multi-radical character that can be understood through competing Lewis resonance forms. Here, following the same rationale, we predict that similar states should be accessible in PGOD materials, which we confirm using accurate density functional theory calculations. Although for graphene the semimetallic state is always dominant, for PGOD materials this state becomes marginally meta-stable relative to open-shell multi-radical and/or closed-shell states that are stabilised through symmetry breaking, in line with analogous molecular systems. These latter states are semiconducting, increasing the potential use of PGOD materials as highly tuneable platforms for future organic nano-electronics and spintronics.
Collapse
Affiliation(s)
- Isaac Alcón
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Carrer Martí i Franquès 1, 08028, Barcelona, Spain.
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Carrer Martí i Franquès 1, 08028, Barcelona, Spain
| | - Iberio de P R Moreira
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Carrer Martí i Franquès 1, 08028, Barcelona, Spain
| | - Stefan T Bromley
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Carrer Martí i Franquès 1, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
13
|
Reta D, Moreira IDPR, Illas F. Calix[n]arene-based polyradicals: enhancing ferromagnetism by avoiding edge effects. Phys Chem Chem Phys 2017; 19:24264-24270. [DOI: 10.1039/c7cp04145d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The absence of edges in circular structures derived from 1,3-arylmethyl polyradical results in realistic molecules showing largely stabilized high-spin ground states.
Collapse
Affiliation(s)
- Daniel Reta
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- School of Chemistry
| | - Ibério de P. R. Moreira
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|