1
|
Oh YW, Kim H, Do LM, Baek KH, Kang IS, Lee GW, Kang CM. Rapid activation of a solution-processed aluminum oxide gate dielectric through intense pulsed light irradiation. RSC Adv 2024; 14:37438-37444. [PMID: 39582940 PMCID: PMC11583877 DOI: 10.1039/d4ra06855f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
In this study, we report rapid activation of a solution-processed aluminum oxide gate dielectric film to reduce its processing time under ambient atmosphere. Aluminum precursor films were exposed to a high energy light-pulse and completely converted into dielectric films within 30 seconds (450 pulses). The aluminum oxide gate dielectric film irradiated using intense pulsed light with 450 pulses exhibits a smooth surface and a leakage current density of less than 10-8 A cm-2 at 2 MV cm-1. Moreover, dielectric constants of the aluminum oxide layer were calculated to be approximately 7. Finally, we fabricated a solution-processed indium gallium zinc oxide thin-film transistor with AlO x using intense pulsed light irradiation, exhibiting a field-effect mobility of 2.99 cm2 V-1 s-1, threshold voltage of 0.73 V, subthreshold swing of 180 mV per decade and I on/I off ratio of 3.9 × 106.
Collapse
Affiliation(s)
- Yeon-Wha Oh
- Division of Nano Convergence Technology Development, Nantional NanoFAB Center Daejeon 34141 South Korea
- Dept. of Electronics Engineering, Chungnam National University Daejeon 34134 South Korea
| | - Hoon Kim
- Electronics and Telecommunications Research Institute 218 Gajeong-ro, Yuseong-gu Daejeon 34129 South Korea +82-42-860-5202 +82-42-860-5229
| | - Lee-Mi Do
- Electronics and Telecommunications Research Institute 218 Gajeong-ro, Yuseong-gu Daejeon 34129 South Korea +82-42-860-5202 +82-42-860-5229
| | - Kyu-Ha Baek
- Electronics and Telecommunications Research Institute 218 Gajeong-ro, Yuseong-gu Daejeon 34129 South Korea +82-42-860-5202 +82-42-860-5229
| | - Il-Suk Kang
- Division of Nano Convergence Technology Development, Nantional NanoFAB Center Daejeon 34141 South Korea
| | - Ga-Won Lee
- Dept. of Electronics Engineering, Chungnam National University Daejeon 34134 South Korea
| | - Chan-Mo Kang
- Electronics and Telecommunications Research Institute 218 Gajeong-ro, Yuseong-gu Daejeon 34129 South Korea +82-42-860-5202 +82-42-860-5229
| |
Collapse
|
2
|
Petrus R, Kowaliński A, Utko J, Matuszak K, Lis T, Sobota P. Heterometallic 3d-4f Alkoxide Precursors for the Synthesis of Binary Oxide Nanomaterials. Inorg Chem 2023; 62:2197-2212. [PMID: 36696546 PMCID: PMC9906784 DOI: 10.1021/acs.inorgchem.2c03872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, a new method for the synthesis of heterometallic 3d-4f alkoxides by the direct reaction of metallic lanthanides (La, Pr, Nd, Gd) with MCl2 (M = Mn, Ni, Co) in 2-methoxyethanol was developed. The method was applied to the synthesis of the heterometallic oxo-alkoxide clusters [Ln4Mn2(μ6-O)(μ3-OR)8(HOR)xCl6] (Ln = La (1), Nd (2), Gd (3); x = 0, 2, 4); [Pr4M2(μ6-O)(μ3-OR)8(HOR)xCl6] (M = Co (4), Ni (5); x = 2, 4); and [Ln4Mn2(μ3-OH)2(μ3-OR)4(μ-OR)4(μ-Cl)2(HOR)4Cl6] (Ln = La (11) and Pr (12)). Mechanistic investigation led to the isolation of the homo- and heterometallic intermediates [Pr(μ-OR)(μ-Cl)(HOR)Cl]n (6), [Co4(μ3-OR)4(HOR)4Cl4] (7), [Ni4(μ3-OR)4(HOEt)4Cl4] (8), [Mn4(μ3-OR)4(HOR)2(HOEt)2Cl4] (9), and [Nd(HOR)4Cl][CoCl4] (10). In the presence of an external M(II) source at 1100 °C, 1-4 and 12 were selectively converted into binary metal oxide nanomaterials with trigonal or orthorhombic perovskite structures, i.e., LaMnO3, GdMnO3, NdMnO3, Pr0.9MnO3, and PrCoO3. Compound 5 decomposed into a mixture of homo- and heterometallic oxides. The method presented provides a valuable platform for the preparation of advanced heterometallic oxide materials with promising magnetic, luminescence, and/or catalytic applications.
Collapse
Affiliation(s)
- Rafał Petrus
- Faculty
of Chemistry, Wrocław University of
Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland,
| | - Adrian Kowaliński
- Faculty
of Chemistry, Wrocław University of
Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland
| | - Józef Utko
- Faculty
of Chemistry, Wrocław University of
Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland
| | - Karolina Matuszak
- Faculty
of Chemistry, Wrocław University of
Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland
| | - Tadeusz Lis
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Piotr Sobota
- Faculty
of Chemistry, Wrocław University of
Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland,
| |
Collapse
|
3
|
High-performance and low-power source-gated transistors enabled by a solution-processed metal oxide homojunction. Proc Natl Acad Sci U S A 2023; 120:e2216672120. [PMID: 36630451 PMCID: PMC9934017 DOI: 10.1073/pnas.2216672120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cost-effective fabrication of mechanically flexible low-power electronics is important for emerging applications including wearable electronics, artificial intelligence, and the Internet of Things. Here, solution-processed source-gated transistors (SGTs) with an unprecedented intrinsic gain of ~2,000, low saturation voltage of +0.8 ± 0.1 V, and a ~25.6 μW power consumption are realized using an indium oxide In2O3/In2O3:polyethylenimine (PEI) blend homojunction with Au contacts on Si/SiO2. Kelvin probe force microscopy confirms source-controlled operation of the SGT and reveals that PEI doping leads to more effective depletion of the reverse-biased Schottky contact source region. Furthermore, using a fluoride-doped AlOx gate dielectric, rigid (on a Si substrate) and flexible (on a polyimide substrate) SGTs were fabricated. These devices exhibit a low driving voltage of +2 V and power consumption of ~11.5 μW, yielding inverters with an outstanding voltage gain of >5,000. Furthermore, electrooculographic (EOG) signal monitoring can now be demonstrated using an SGT inverter, where a ~1.0 mV EOG signal is amplified to over 300 mV, indicating significant potential for applications in wearable medical sensing and human-computer interfacing.
Collapse
|
4
|
Kim J, Park JB, Zheng D, Kim JS, Cheng Y, Park SK, Huang W, Marks TJ, Facchetti A. Readily Accessible Metallic Micro-Island Arrays for High-Performance Metal Oxide Thin-Film Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205871. [PMID: 36039798 DOI: 10.1002/adma.202205871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Thin-film transistors using metal oxide semiconductors are essential in many unconventional electronic devices. Nevertheless, further advances will be necessary to broaden their technological appeal. Here, a new strategy is reported to achieve high-performance solution-processed metal oxide thin-film transistors (MOTFTs) by introducing a metallic micro-island array (M-MIA) on top of the MO back channel, where the MO is a-IGZO (amorphous indium-gallium-zinc-oxide). Here Al-MIAs are fabricated using honeycomb cinnamate cellulose films, created by a scalable breath-figure method, as a shadow mask. For IGZO TFTs, the electron mobility (µe ) increases from ≈3.6 cm2 V-1 s-1 to near 15.6 cm2 V-1 s-1 for optimal Al-MIA dimension/coverage of 1.25 µm/51%. The Al-MIA IGZO TFT performance is superior to that of controls using compact/planar Al layers (Al-PL TFTs) and Au-MIAs with the same channel coverage. Kelvin probe force microscopy and technology computer-aided design simulations reveal that charge transfer occurs between the Al and the IGZO channel which is optimized for specific Al-MIA dimensions/surface channel coverages. Furthermore, such Al-MIA IGZO TFTs with a high-k fluoride-doped alumina dielectric exhibit a maximum µe of >50.2 cm2 V-1 s-1 . This is the first demonstration of a micro-structured MO semiconductor heterojunction with submicrometer resolution metallic arrays for enhanced transistor performance and broad applicability to other devices.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Joon Bee Park
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Korea
| | - Ding Zheng
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Joon-Seok Kim
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Sung Kyu Park
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Korea
| | - Wei Huang
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Tobin J Marks
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, IL, 60077, USA
| |
Collapse
|
5
|
Pan Y, Liang X, Liang Z, Yao R, Ning H, Zhong J, Chen N, Qiu T, Wei X, Peng J. Application of Solution Method to Prepare High Performance Multicomponent Oxide Thin Films. MEMBRANES 2022; 12:membranes12070641. [PMID: 35877844 PMCID: PMC9320365 DOI: 10.3390/membranes12070641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023]
Abstract
Capacitors play an increasingly important role in hybrid integrated circuits, while the MIM capacitors with high capacitance density and small thickness can meet the needs of high integration. Generally speaking, the films prepared with a single metal oxide dielectric often achieve a breakthrough in one aspect of performance, but dielectric layers are required to be improved to get better performance in leakage current, capacitance density, and transmittance simultaneously in modern electronic devices. Therefore, we optimized the performance of the dielectric layers by using multiple metal oxides. We combined zirconia, yttria, magnesium oxide, alumina, and hafnium oxide with the solution method to find the best combination of these five metal oxides. The physical properties of the multi-component films were measured by atomic force microscopy (AFM), ultraviolet-visible spectrophotometer, and other instruments. The results show that the films prepared by multi-component metal oxides have good transmittance and low roughness. The thicknesses of all films in our experiment are less than 100 nm. Then, metal–insulator–metal (MIM) devices were fabricated. In addition, we characterized the electrical properties of MIM devices. We find that multi-component oxide films can achieve good performances in several aspects. The aluminum-magnesium-yttrium-zirconium-oxide (AMYZOx) group of 0.6 M has the lowest leakage current density, which is 5.03 × 10−8 A/cm2 @ 1.0 MV/cm. The hafnium-magnesium-yttrium-zirconium-oxide (HMYZOx) group of 0.8 M has a maximum capacitance density of 208 nF/cm2. The films with a small thickness and a high capacitance density are very conducive to high integration. Therefore, we believe that multi-component films have potential in the process of dielectric layers and great application prospects in highly integrated electronic devices.
Collapse
Affiliation(s)
- Yaru Pan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China; (Y.P.); (Z.L.); (R.Y.); (J.Z.); (N.C.); (J.P.)
| | - Xihui Liang
- Institute of Semiconductors, Guangdong Academy of Sciences, Guangzhou 510650, China;
| | - Zhihao Liang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China; (Y.P.); (Z.L.); (R.Y.); (J.Z.); (N.C.); (J.P.)
| | - Rihui Yao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China; (Y.P.); (Z.L.); (R.Y.); (J.Z.); (N.C.); (J.P.)
| | - Honglong Ning
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China; (Y.P.); (Z.L.); (R.Y.); (J.Z.); (N.C.); (J.P.)
- Correspondence: (H.N.); (T.Q.)
| | - Jinyao Zhong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China; (Y.P.); (Z.L.); (R.Y.); (J.Z.); (N.C.); (J.P.)
| | - Nanhong Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China; (Y.P.); (Z.L.); (R.Y.); (J.Z.); (N.C.); (J.P.)
| | - Tian Qiu
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
- Correspondence: (H.N.); (T.Q.)
| | - Xiaoqin Wei
- Southwest Institute of Technology and Engineering, Chongqing 400039, China;
| | - Junbiao Peng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China; (Y.P.); (Z.L.); (R.Y.); (J.Z.); (N.C.); (J.P.)
| |
Collapse
|
6
|
Sil A, Goldfine EA, Huang W, Bedzyk MJ, Medvedeva JE, Facchetti A, Marks TJ. Role of Fluoride Doping in Low-Temperature Combustion-Synthesized ZrO x Dielectric Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12340-12349. [PMID: 35232012 DOI: 10.1021/acsami.1c22853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zirconium oxide (ZrOx) is an attractive metal oxide dielectric material for low-voltage, optically transparent, and mechanically flexible electronic applications due to the high dielectric constant (κ ∼ 14-30), negligible visible light absorption, and, as a thin film, good mechanical flexibility. In this contribution, we explore the effect of fluoride doping on structure-property-function relationships in low-temperature solution-processed amorphous ZrOx. Fluoride-doped zirconium oxide (F:ZrOx) films with a fluoride content between 1.7 and 3.2 in atomic (at) % were synthesized by a combustion synthesis procedure. Irrespective of the fluoride content, grazing incidence X-ray diffraction, atomic-force microscopy, and UV-vis spectroscopy data indicate that all F:ZrOx films are amorphous, atomically smooth, and transparent in visible light. Impedance spectroscopy measurements reveal that unlike solution-processed fluoride-doped aluminum oxide (F:AlOx), fluoride doping minimally affects the frequency-dependent capacitance instability of solution-processed F:ZrOx films. This result can be rationalized by the relatively weak Zr-F versus Zr-O bonds and the large ionic radius of Zr+4, as corroborated by EXAFS analysis and MD simulations. Nevertheless, the performance of pentacene thin-film transistors (TFTs) with F:ZrOx gate dielectrics indicates that fluoride incorporation reduces I-V hysteresis in the transfer curves and enhances bias stress stability versus TFTs fabricated with analogous, but undoped ZrOx films as gate dielectrics, due to reduced trap density.
Collapse
Affiliation(s)
- Aritra Sil
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Elise A Goldfine
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 611731, China
| | - Michael J Bedzyk
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Julia E Medvedeva
- Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Flexterra Inc., 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Liu Q, Zhao C, Zhao T, Liu Y, Mitrovic IZ, Xu W, Yang L, Zhao CZ. Ecofriendly Solution-Combustion-Processed Thin-Film Transistors for Synaptic Emulation and Neuromorphic Computing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18961-18973. [PMID: 33848133 DOI: 10.1021/acsami.0c20947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ecofriendly combustion synthesis (ECS) and self-combustion synthesis (ESCS) have been successfully utilized to deposit high-k aluminum oxide (AlOx) dielectrics at low temperatures and applied for aqueous In2O3 thin-film transistors (TFTs) accordingly. The ECS and ESCS processes facilitate the formation of high-quality dielectrics at lower temperatures compared to conventional methods based on an ethanol precursor, as confirmed by thermal analysis and chemical composition characterization. The aqueous In2O3 TFTs based on ECS and ESCS-AlOx show enhanced electrical characteristics and counterclockwise transfer-curve hysteresis. The memory-like counterclockwise behavior in the transfer curve modulated by the gate bias voltage is comparable to the signal modulation by the neurotransmitters. ECS and ESCS transistors are employed to perform synaptic emulation; various short-term and long-term memory functions are emulated with low operating voltages and high excitatory postsynaptic current levels. High stability and reproducibility are achieved within 240 pulses of long-term synaptic potentiation and depression. The synaptic emulation functions achieved in this work match the demand for artificial neural networks (ANN), and a multilayer perceptron (MLP) is developed using an ECS-AlOx synaptic transistor for image recognition. A superior recognition rate of over 90% is achieved based on ECS-AlOx synaptic transistors, which facilitates the implementation of the metal-oxide synaptic transistor for future neuromorphic computing via an ecofriendly route.
Collapse
Affiliation(s)
- Qihan Liu
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 72Z, U.K
| | - Chun Zhao
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 72Z, U.K
| | - Tianshi Zhao
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 72Z, U.K
| | - Yina Liu
- Department of Applied Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Ivona Z Mitrovic
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 72Z, U.K
| | - Wangying Xu
- College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518061, China
| | - Li Yang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Ce Zhou Zhao
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 72Z, U.K
| |
Collapse
|
8
|
Jeon SP, Heo JS, Kim I, Kim YH, Park SK. Enhanced Interfacial Integrity of Amorphous Oxide Thin-Film Transistors by Elemental Diffusion of Ternary Oxide Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57996-58004. [PMID: 33332113 DOI: 10.1021/acsami.0c16068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low-temperature solution-processed oxide semiconductor and dielectric films typically possess a substantial number of defects and impurities due to incomplete metal-oxygen bond formation, causing poor electrical performance and stability. Here, we exploit a facile route to improve the film quality and the interfacial property of low-temperature solution-processed oxide thin films via elemental diffusion between metallic ion-doped InOx (M:InOx) ternary oxide semiconductor and AlOx gate dielectric layers. Particularly, it was revealed that metallic dopants such as magnesium (Mg) and hafnium (Hf) having a small ionic radius, a high Gibbs energy of oxidation, and bonding dissociation energy could successfully diffuse into the low-quality AlOx gate dielectric layer and effectively reduce the structural defects and residual impurities present in the bulk and at the semiconductor/dielectric interface. Through an extensive investigation on the compositional, structural, and electrical properties of M:InOx/AlOx thin-film transistors (TFTs), we provide direct evidences of elemental diffusion occurred between M:InOx and AlOx layers as well as its contribution to the electrical performance and operational stability. Using the elemental diffusion process, we demonstrate solution-processed Hf:InOx TFTs using a low-temperature (180 °C) AlOx gate dielectric having a field-effect mobility of 2.83 cm2 V-1·s-1 and improved bias stability. Based on these results, it is concluded that the elemental diffusion between oxide semiconductor and gate dielectric layers can play a crucial role in realizing oxide TFTs with enhanced structural and interfacial integrity.
Collapse
Affiliation(s)
- Seong-Pil Jeon
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06980, Korea
| | - Jae Sang Heo
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut 06030, United States
- School of Advanced Materials Science and Engineering and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Insoo Kim
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut 06030, United States
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Sung Kyu Park
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06980, Korea
| |
Collapse
|
9
|
Zhuang X, Patel S, Zhang C, Wang B, Chen Y, Liu H, Dravid VP, Yu J, Hu YY, Huang W, Facchetti A, Marks TJ. Frequency-Agile Low-Temperature Solution-Processed Alumina Dielectrics for Inorganic and Organic Electronics Enhanced by Fluoride Doping. J Am Chem Soc 2020; 142:12440-12452. [PMID: 32539371 DOI: 10.1021/jacs.0c05161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The frequency-dependent capacitance of low-temperature solution-processed metal oxide (MO) dielectrics typically yields unreliable and unstable thin-film transistor (TFT) performance metrics, which hinders the development of next-generation roll-to-roll MO electronics and obscures intercomparisons between processing methodologies. Here, capacitance values stable over a wide frequency range are achieved in low-temperature combustion-synthesized aluminum oxide (AlOx) dielectric films by fluoride doping. For an optimal F incorporation of ∼3.7 atomic % F, the F:AlOx film capacitance of 166 ± 11 nF/cm2 is stable over a 10-1-104 Hz frequency range, far more stable than that of neat AlOx films (capacitance = 336 ± 201 nF/cm2) which falls from 781 ± 85 nF/cm2 to 104 ± 4 nF/cm2 over this frequency range. Importantly, both n-type/inorganic and p-type/organic TFTs exhibit reliable electrical characteristics with minimum hysteresis when employing the F:AlOx dielectric with ∼3.7 atomic % F. Systematic characterization of film microstructural/compositional and electronic/dielectric properties by X-ray photoelectron spectroscopy, time-of-fight secondary ion mass spectrometry, cross-section transmission electron microscopy, solid-state nuclear magnetic resonance, and UV-vis absorption spectroscopy reveal that fluoride doping generates AlOF, which strongly reduces the mobile hydrogen content, suppressing polarization mechanisms at low frequencies. Thus, this work provides a broadly applicable anion doping strategy for the realization of high-performance solution-processed metal oxide dielectrics for both organic and inorganic electronics applications.
Collapse
Affiliation(s)
- Xinming Zhuang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.,Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Sawankumar Patel
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Chi Zhang
- Department of Materials Science and Engineering, The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Binghao Wang
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Yao Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Haoyu Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Yan-Yan Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Jo J, Kang S, Heo JS, Kim Y, Park SK. Flexible Metal Oxide Semiconductor Devices Made by Solution Methods. Chemistry 2020; 26:9126-9156. [DOI: 10.1002/chem.202000090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Jeong‐Wan Jo
- School of Electrical and Electronics EngineeringChung-Ang University Seoul 06980 Republic of Korea
- School of Advanced Materials Science and EngineeringSungkyunkwan University Suwon 16419 Republic of Korea
| | - Seung‐Han Kang
- School of Electrical and Electronics EngineeringChung-Ang University Seoul 06980 Republic of Korea
| | - Jae Sang Heo
- Department of MedicineUniversity of Connecticut School of Medicine Farmington CT 06030 USA
| | - Yong‐Hoon Kim
- School of Advanced Materials Science and EngineeringSungkyunkwan University Suwon 16419 Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Sung Kyu Park
- School of Electrical and Electronics EngineeringChung-Ang University Seoul 06980 Republic of Korea
| |
Collapse
|
11
|
Kang YH, Min BK, Kim SK, Bae G, Song W, Lee C, Cho SY, An KS. Proton Conducting Perhydropolysilazane-Derived Gate Dielectric for Solution-Processed Metal Oxide-Based Thin-Film Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15396-15405. [PMID: 32148019 DOI: 10.1021/acsami.0c01274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Perhydropolysilazane (PHPS), an inorganic polymer composed of Si-N and Si-H, has attracted much attention as a precursor for gate dielectrics of thin-film transistors (TFTs) due to its facile processing even at a relatively low temperature. However, an in-depth understanding of the tunable dielectric behavior of PHPS-derived dielectrics and their effects on TFT device performance is still lacking. In this study, the PHPS-derived dielectric films formed at different annealing temperatures have been used as the gate dielectric layer for solution-processed indium zinc oxide (IZO) TFTs. Notably, the IZO TFTs fabricated on PHPS annealed at 350 °C exhibit mobility as high as 118 cm2 V-1 s-1, which is about 50 times the IZO TFTs made on typical SiO2 dielectrics. The outstanding electrical performance is possible because of the exceptional capacitance of PHPS-derived dielectric caused by the limited hydrolysis reaction of PHPS at a low processing temperature (<400 °C). According to our analysis, the exceptional dielectric behavior is originated from the electric double layer formed by mobile of protons in the low temperature-annealed PHPS dielectrics. Furthermore, proton conduction through the PHPS dielectric occurs through a three-dimensional pathway by a hopping mechanism, which allows uniform polarization of the dielectric even at room temperature, leading to amplified performance of the IZO TFTs.
Collapse
Affiliation(s)
- Young Hun Kang
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Bok Ki Min
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Graphene Research Team, ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Seong K Kim
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34430, Republic of Korea
| | - Garam Bae
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Wooseok Song
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Changjin Lee
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Song Yun Cho
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ki-Seok An
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
12
|
Heo JS, Jeon SP, Kim I, Lee W, Kim YH, Park SK. Suppression of Interfacial Disorders in Solution-Processed Metal Oxide Thin-Film Transistors by Mg Doping. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48054-48061. [PMID: 31791119 DOI: 10.1021/acsami.9b17642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fabrication of high-performance metal oxide thin-film transistors (TFTs) using a low-temperature solution process may facilitate the realization of ultraflexible and wearable electronic devices. However, the development of highly stable oxide gate dielectrics at a low temperature has been a challenging issue since a considerable amount of residual impurities and defective bonding states is present in low-temperature-processed gate dielectrics causing a large counterclockwise hysteresis and a significant instability. Here, we report a new approach to effectively remove the residual impurities and suppress the relevant dipole disorder in a low-temperature-processed (180 °C) AlOx gate dielectric layer by magnesium (Mg) doping. Mg is well known as a promising material for suppression of oxygen vacancy defects and improvement of operational stability due to a high oxygen vacancy formation energy (Evo = 9.8 eV) and a low standard reduction potential (E0 = -2.38 V). Therefore, with an adequate control of Mg concentration in metal oxide (MO) films, oxygen-related defects could be easily suppressed without additional treatments and then stable metal-oxygen-metal (M-O-M) network formation could be achieved, causing excellent operational stability. By optimal Mg doping (10%) in the InOx channel layer, Mg:InOx TFTs exhibited negligible clockwise hysteresis and a field-effect mobility of >4 cm2 V-1 s-1. Furthermore, the electric characteristics of the low-temperature-processed AlOx gate dielectric with high impurities were improved by Mg diffusion originating in Mg doping, resulting in stable threshold voltage shift in the bias stability test.
Collapse
Affiliation(s)
- Jae Sang Heo
- School of Electrical and Electronics Engineering , Chung-Ang University , Seoul 06980 , Korea
- Department of Medicine , University of Connecticut School of Medicine , Farmington , Connecticut 06030 , United States
| | - Seong-Pil Jeon
- School of Electrical and Electronics Engineering , Chung-Ang University , Seoul 06980 , Korea
| | - Insoo Kim
- Department of Medicine , University of Connecticut School of Medicine , Farmington , Connecticut 06030 , United States
| | - Woobin Lee
- School of Advanced Materials Science and Engineering and SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon 16419 , Korea
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering and SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon 16419 , Korea
| | - Sung Kyu Park
- School of Electrical and Electronics Engineering , Chung-Ang University , Seoul 06980 , Korea
| |
Collapse
|
13
|
Xu W, Li H, Xu JB, Wang L. Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25878-25901. [PMID: 29509395 DOI: 10.1021/acsami.7b16010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solution-processed metal oxide thin-film transistors (TFTs) are considered as one of the most promising transistor technologies for future large-area flexible electronics. This work surveys the recent advances in solution-processed metal oxide TFTs, including n-type oxide semiconductors, oxide dielectrics, and p-type oxide semiconductors. We first deliver a review on the history and present status of metal oxide TFTs. Then, we present the recent progress in solution-processed n-type oxide semiconductors, with a special focus on low-temperature and large-area solution-based approaches as well as emerging nondisplay applications. Next, we give a detailed analysis of the state-of-the-art solution-processed oxide dielectrics for low-power electronics. We further discuss the recent advances in solution-based p-type oxide semiconductors, which will enable the highly desirable future low-cost large-area complementary circuits. Finally, we draw conclusions and outline the perspectives over the research field.
Collapse
Affiliation(s)
- Wangying Xu
- College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Special Functional Materials , Shenzhen University , Shenzhen 518060 , China
| | - Hao Li
- Department of Electronic Engineering, Materials Science and Technology Research Center , The Chinese University of Hong Kong , Shatin New Town , Hong Kong SAR 999077 , China
| | - Jian-Bin Xu
- Department of Electronic Engineering, Materials Science and Technology Research Center , The Chinese University of Hong Kong , Shatin New Town , Hong Kong SAR 999077 , China
| | - Lei Wang
- Department of Electronic Engineering, Materials Science and Technology Research Center , The Chinese University of Hong Kong , Shatin New Town , Hong Kong SAR 999077 , China
- Department of Applied Physics, School of Physical and Mathematical Sciences , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
14
|
Garlapati SK, Divya M, Breitung B, Kruk R, Hahn H, Dasgupta S. Printed Electronics Based on Inorganic Semiconductors: From Processes and Materials to Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707600. [PMID: 29952112 DOI: 10.1002/adma.201707600] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Following the ever-expanding technological demands, printed electronics has shown palpable potential to create new and commercially viable technologies that will benefit from its unique characteristics, such as, large-area and wide range of substrate compatibility, conformability and low-cost. Through the last few decades, printed/solution-processed field-effect transistors (FETs) and circuits have witnessed immense research efforts, technological growth and increased commercial interests. Although printing of functional inks comprising organic semiconductors has already been initiated in early 1990s, gradually the attention, at least partially, has been shifted to various forms of inorganic semiconductors, starting from metal chalcogenides, oxides, carbon nanotubes and very recently to graphene and other 2D semiconductors. In this review, the entire domain of printable inorganic semiconductors is considered. In fact, thanks to the continuous development of materials/functional inks and novel design/printing strategies, the inorganic printed semiconductor-based circuits today have reached an operation frequency up to several hundreds of kilohertz with only a few nanosecond time delays at the individual FET/inverter levels; in this regard, often circuits based on hybrid material systems have been found to be advantageous. At the end, a comparison of relative successes of various printable inorganic semiconductor materials, the remaining challenges and the available future opportunities are summarized.
Collapse
Affiliation(s)
- Suresh Kumar Garlapati
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
| | - Mitta Divya
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Ben Breitung
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
| | - Robert Kruk
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
- KIT-TUD Joint Research Laboratory Nanomaterials, Technische Universität Darmstadt (TUD), Institute of Materials Science, Jovanka-Bontschits-Str. 2, ,64287, Darmstadt, Germany
| | - Subho Dasgupta
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
15
|
Liu A, Zhu H, Sun H, Xu Y, Noh YY. Solution Processed Metal Oxide High-κ Dielectrics for Emerging Transistors and Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706364. [PMID: 29904984 DOI: 10.1002/adma.201706364] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/07/2018] [Indexed: 06/08/2023]
Abstract
The electronic functionalities of metal oxides comprise conductors, semiconductors, and insulators. Metal oxides have attracted great interest for construction of large-area electronics, particularly thin-film transistors (TFTs), for their high optical transparency, excellent chemical and thermal stability, and mechanical tolerance. High-permittivity (κ) oxide dielectrics are a key component for achieving low-voltage and high-performance TFTs. With the expanding integration of complementary metal oxide semiconductor transistors, the replacement of SiO2 with high-κ oxide dielectrics has become urgently required, because their provided thicker layers suppress quantum mechanical tunneling. Toward low-cost devices, tremendous efforts have been devoted to vacuum-free, solution processable fabrication, such as spin coating, spray pyrolysis, and printing techniques. This review focuses on recent progress in solution processed high-κ oxide dielectrics and their applications to emerging TFTs. First, the history, basics, theories, and leakage current mechanisms of high-κ oxide dielectrics are presented, and the underlying mechanism for mobility enhancement over conventional SiO2 is outlined. Recent achievements of solution-processed high-κ oxide materials and their applications in TFTs are summarized and traditional coating methods and emerging printing techniques are introduced. Finally, low temperature approaches, e.g., ecofriendly water-induced, self-combustion reaction, and energy-assisted post treatments, for the realization of flexible electronics and circuits are discussed.
Collapse
Affiliation(s)
- Ao Liu
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Huihui Zhu
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Huabin Sun
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Yong Xu
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Yong-Young Noh
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| |
Collapse
|
16
|
Huang W, Guo P, Zeng L, Li R, Wang B, Wang G, Zhang X, Chang RPH, Yu J, Bedzyk MJ, Marks TJ, Facchetti A. Metal Composition and Polyethylenimine Doping Capacity Effects on Semiconducting Metal Oxide–Polymer Blend Charge Transport. J Am Chem Soc 2018; 140:5457-5473. [DOI: 10.1021/jacs.8b01252] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Peijun Guo
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Li Zeng
- Applied Physics Program and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Ran Li
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Binghao Wang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Gang Wang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xinan Zhang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Robert P. H. Chang
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Michael J. Bedzyk
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Applied Physics Program and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Tobin J. Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Flexterra Inc., 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| |
Collapse
|
17
|
Jo JW, Kim KH, Kim J, Ban SG, Kim YH, Park SK. High-Mobility and Hysteresis-Free Flexible Oxide Thin-Film Transistors and Circuits by Using Bilayer Sol-Gel Gate Dielectrics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2679-2687. [PMID: 29280381 DOI: 10.1021/acsami.7b10786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we demonstrate high-performance and hysteresis-free solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) and high-frequency-operating seven-stage ring oscillators using a low-temperature photochemically activated Al2O3/ZrO2 bilayer gate dielectric. It was found that the IGZO TFTs with single-layer gate dielectrics such as Al2O3, ZrO2, or sodium-doped Al2O3 exhibited large hysteresis, low field-effect mobility, or unstable device operation owing to the interfacial/bulk trap states, insufficient band offset, or a substantial number of mobile ions present in the gate dielectric layer, respectively. To resolve these issues and to explain the underlying physical mechanisms, a series of electrical analyses for various single- and bilayer gate dielectrics was carried out. It is shown that compared to single-layer gate dielectrics, the Al2O3/ZrO2 gate dielectric exhibited a high dielectric constant of 8.53, low leakage current density (∼10-9 A cm-2 at 1 MV cm-1), and stable operation at high frequencies. Using the photochemically activated Al2O3/ZrO2 gate dielectric, the seven-stage ring oscillators operating at an oscillation frequency of ∼334 kHz with a propagation delay of <216 ns per stage were successfully demonstrated on a polymeric substrate.
Collapse
Affiliation(s)
- Jeong-Wan Jo
- School of Electrical and Electronics Engineering, Chung-Ang University , Seoul 06980, Korea
| | - Kwang-Ho Kim
- Korea Electronics Technology Institute , Seongnam 13509, Korea
| | - Jaeyoung Kim
- School of Advanced Materials Science and Engineering, and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University , Suwon 16419, Korea
| | - Seok Gyu Ban
- School of Electrical and Electronics Engineering, Chung-Ang University , Seoul 06980, Korea
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering, and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University , Suwon 16419, Korea
| | - Sung Kyu Park
- School of Electrical and Electronics Engineering, Chung-Ang University , Seoul 06980, Korea
| |
Collapse
|
18
|
Heo JS, Choi S, Jo JW, Kang J, Park HH, Kim YH, Park SK. Frequency-Stable Ionic-Type Hybrid Gate Dielectrics for High Mobility Solution-Processed Metal-Oxide Thin-Film Transistors. MATERIALS 2017; 10:ma10060612. [PMID: 28772972 PMCID: PMC5553520 DOI: 10.3390/ma10060612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 01/15/2023]
Abstract
In this paper, we demonstrate high mobility solution-processed metal-oxide thin-film transistors (TFTs) by using a high-frequency-stable ionic-type hybrid gate dielectric (HGD). The HGD gate dielectric, a blend of sol-gel aluminum oxide (AlOx) and poly(4-vinylphenol) (PVP), exhibited high dielectric constant (ε~8.15) and high-frequency-stable characteristics (1 MHz). Using the ionic-type HGD as a gate dielectric layer, an minimal electron-double-layer (EDL) can be formed at the gate dielectric/InOx interface, enhancing the field-effect mobility of the TFTs. Particularly, using the ionic-type HGD gate dielectrics annealed at 350 °C, InOx TFTs having an average field-effect mobility of 16.1 cm2/Vs were achieved (maximum mobility of 24 cm2/Vs). Furthermore, the ionic-type HGD gate dielectrics can be processed at a low temperature of 150 °C, which may enable their applications in low-thermal-budget plastic and elastomeric substrates. In addition, we systematically studied the operational stability of the InOx TFTs using the HGD gate dielectric, and it was observed that the HGD gate dielectric effectively suppressed the negative threshold voltage shift during the negative-illumination-bias stress possibly owing to the recombination of hole carriers injected in the gate dielectric with the negatively charged ionic species in the HGD gate dielectric.
Collapse
Affiliation(s)
- Jae Sang Heo
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul 06980, Korea.
| | - Seungbeom Choi
- SKKU Advanced Institute of Nanotechnology (SAINT) and School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Jeong-Wan Jo
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul 06980, Korea.
| | - Jingu Kang
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul 06980, Korea.
| | - Ho-Hyun Park
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul 06980, Korea.
| | - Yong-Hoon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) and School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Sung Kyu Park
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul 06980, Korea.
| |
Collapse
|
19
|
Leppäniemi J, Eiroma K, Majumdar H, Alastalo A. Far-UV Annealed Inkjet-Printed In 2O 3 Semiconductor Layers for Thin-Film Transistors on a Flexible Polyethylene Naphthalate Substrate. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8774-8782. [PMID: 28211995 DOI: 10.1021/acsami.6b14654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The inkjet-printing process of precursor solutions containing In nitrate dissolved in 2-methoxyethanol is optimized using ethylene glycol as a cosolvent that allows the stabilization of the droplet formation, leading to a robust, repeatable printing process. The inkjet-printed precursor films are then converted to In2O3 semiconductors at flexible-substrate-compatible low temperatures (150-200 °C) using combined far-ultraviolet (FUV) exposure at ∼160 nm and thermal treatment. The compositional nature of the precursor-to-metal oxide conversion is studied using grazing incidence X-ray diffraction (GIXRD), X-ray reflectivity (XRR), and Fourier transform infrared (FTIR) spectroscopy that indicate that amorphous, high density (up to 5.87 g/cm3), and low impurity In2O3 films can be obtained using the combined annealing technique. Prolonged annealing (180 min) at 150 °C yields enhancement-mode TFTs with saturation mobility of 4.3 cm2/(Vs) and ∼1 cm2/(Vs) on rigid Si/SiO2 and flexible plastic PEN substrates, respectively. This paves the way for manufacturing relatively high-performance, printed metal-oxide TFT arrays on cheap, flexible substrate for commercial applications.
Collapse
Affiliation(s)
- Jaakko Leppäniemi
- VTT Technical Research Centre of Finland, Ltd. , Tietotie 3, FI-02044 Espoo, Finland
| | - Kim Eiroma
- VTT Technical Research Centre of Finland, Ltd. , Tietotie 3, FI-02044 Espoo, Finland
| | - Himadri Majumdar
- VTT Technical Research Centre of Finland, Ltd. , Tietotie 3, FI-02044 Espoo, Finland
| | - Ari Alastalo
- VTT Technical Research Centre of Finland, Ltd. , Tietotie 3, FI-02044 Espoo, Finland
| |
Collapse
|