1
|
Song M, Alavi A, Li Manni G. Permutation symmetry in spin-adapted many-body wave functions. Faraday Discuss 2024. [PMID: 39158096 DOI: 10.1039/d4fd00061g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In the domain of exchange-coupled polynuclear transition-metal (PNTM) clusters, local emergent symmetries exist which can be exploited to greatly increase the sparsity of the configuration interaction (CI) eigensolutions of such systems. Sparsity of the CI secular problem is revealed by exploring the site permutation space within spin-adapted many-body bases, and highly compressed wave functions may arise by finding optimal site orderings. However, the factorial cost of searching through the permutation space remains a bottleneck for clusters with a large number of metal centers. In this work, we explore ways to reduce the factorial scaling, by combining permutation and point group symmetry arguments, and using commutation relations between cumulative partial spin and the Hamiltonian operators, . Certain site orderings lead to commuting operators, from which more sparse wave functions arise. Two graphical strategies will be discussed, one to rapidly evaluate the commutators of interest, and one in the form of a tree search algorithm to predict how many and which distinct site permutations are to be analyzed, eliminating redundancies in the permutation space. Particularly interesting is the case of the singlet spin states for which an additional reversal symmetry can be utilized to further reduce the number of distinct site permutations.
Collapse
Affiliation(s)
- Maru Song
- Electronic Structure Theory Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
| | - Ali Alavi
- Electronic Structure Theory Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Giovanni Li Manni
- Electronic Structure Theory Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
| |
Collapse
|
2
|
Dhingra D, Shori A, Förster A. Chemically accurate singlet-triplet gaps of organic chromophores and linear acenes by the random phase approximation and σ-functionals. J Chem Phys 2023; 159:194105. [PMID: 37966004 DOI: 10.1063/5.0177528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Predicting the energy differences between different spin-states is challenging for many widely used ab initio electronic structure methods. We here assess the ability of the direct random phase approximation (dRPA), dRPA plus two different screened second-order exchange (SOX) corrections, and σ-functionals to predict adiabatic singlet-triplet gaps. With mean absolute deviations of below 0.1 eV to experimental reference values, independent of the Kohn-Sham starting point, dRPA and σ-functionals accurately predict singlet-triplet gaps of 18 organic chromophores. The addition of SOX corrections to dRPA considerably worsens agreement with experiment, adding to the mounting evidence that dRPA+SOX methods are not generally applicable beyond-RPA methods. Also for a series of linear acene chains with up to ten fused rings, dRPA, and σ-functionals are in excellent agreement with coupled-cluster single double triple reference data. In agreement with advanced multi-reference methods, dRPA@PBE and σ-functional@PBE predict a singlet ground state for all chain lengths, while dRPA@PBE0 and σ-functional@PBE0 predict a triplet ground state for longer acenes. Our work shows dRPA and σ-functionals to be reliable methods for calculating singlet-triplet gaps in aromatic molecules.
Collapse
Affiliation(s)
- Daniella Dhingra
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Arjun Shori
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Arno Förster
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Sarkar A, Gagliardi L. Multiconfiguration Pair-Density Functional Theory for Vertical Excitation Energies in Actinide Molecules. J Phys Chem A 2023; 127:9389-9397. [PMID: 37889499 DOI: 10.1021/acs.jpca.3c05803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Modeling actinides with electronic structure theories is challenging because these systems present a strong ligand field and metal-ligand covalency. We systematically investigate the effectiveness of pair-density functional theory (PDFT) for the calculation of vertical excitation energies in An(III), [AnIIICl6]3-, and [AnVIO2]2+ (An = U, Np, Pu, and Am). We compare the performance of PDFT, hybrid PDFT, and multistate PDFT with traditional active-space methods followed by perturbation theory, like multistate CASPT2, and with experimental data. Overall, multistate PDFT gives quantitative agreement with multistate CASPT2 at a significantly reduced computational cost.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Director of the Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Kim SY, Park JW. Approximate Excited-State Geometry Optimization with the State-Averaged Adaptive Sampling Configuration Interaction Algorithm with Large Active Spaces. J Chem Theory Comput 2023; 19:7260-7272. [PMID: 37800852 DOI: 10.1021/acs.jctc.3c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The selected configuration interaction (SCI) wave function is a useful approximation to the full configuration interaction (FCI) one. The adaptive sampling CI (ASCI) method is a deterministic SCI method. By combining ASCI and orbital optimization, the ASCI self-consistent field (ASCI-SCF) method, which is an approximation of the complete active space self-consistent field (CASSCF) method, can be formulated as well. However, their applicability has been tested mainly on the systems in their electronically ground states. In this work, we implement the state-average (SA) ansatz in ASCI-SCF calculations to calculate excited states. We also derive expressions for the approximate analytical gradient and implement them as a computer program. We demonstrate the applicability of the current method for calculating vertical and adiabatic excitation energies and optimizing the molecular geometries of thermally activated delayed fluorescence (TADF) molecules.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| | - Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
5
|
Park JW. Dynamic Correlation on the Adaptive Sampling Configuration Interaction (ASCI) Reference Function: ASCI-DSRG-MRPT2. J Chem Theory Comput 2023; 19:6263-6272. [PMID: 37611192 DOI: 10.1021/acs.jctc.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A balanced description of static and dynamic electron correlations is at the heart of quantum chemical methods. To obtain accurate results in strongly correlated systems using wave-function-based methods, a large active space is necessary to ensure correct descriptions of static correlations. Correcting the results for dynamic correlations is also necessary. In this work, we present implementations of second-order perturbation theory for dynamic correlations based on the adaptive sampling configuration interaction self-consistent field (ASCI-SCF) method. In particular, we implemented spin-free driven similarity renormalization group second-order multireference perturbation theory (DSRG-MRPT2). The extrapolation of the ASCI + PT2 energy based on the relaxed Hamiltonian in DSRG-MRPT2 gives a reasonable approximation of DSRG-MRPT2 based on CASSCF. We demonstrate the application of the ASCI-DSRG-MRPT2 method in evaluations of the spin-state energy gaps in iron porphyrins, polyacenes, and periacenes along with the reaction energies of methane oxidation by FeO+ and electrocyclic ring formation in cethrene.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
6
|
Villot C, Huang T, Lao KU. Accurate prediction of global-density-dependent range-separation parameters based on machine learning. J Chem Phys 2023; 159:044103. [PMID: 37486048 DOI: 10.1063/5.0157340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
In this work, we develop an accurate and efficient XGBoost machine learning model for predicting the global-density-dependent range-separation parameter, ωGDD, for long-range corrected functional (LRC)-ωPBE. This ωGDDML model has been built using a wide range of systems (11 466 complexes, ten different elements, and up to 139 heavy atoms) with fingerprints for the local atomic environment and histograms of distances for the long-range atomic correlation for mapping the quantum mechanical range-separation values. The promising performance on the testing set with 7046 complexes shows a mean absolute error of 0.001 117 a0-1 and only five systems (0.07%) with an absolute error larger than 0.01 a0-1, which indicates the good transferability of our ωGDDML model. In addition, the only required input to obtain ωGDDML is the Cartesian coordinates without electronic structure calculations, thereby enabling rapid predictions. LRC-ωPBE(ωGDDML) is used to predict polarizabilities for a series of oligomers, where polarizabilities are sensitive to the asymptotic density decay and are crucial in a variety of applications, including the calculations of dispersion corrections and refractive index, and surpasses the performance of all other popular density functionals except for the non-tuned LRC-ωPBE. Finally, LRC-ωPBE (ωGDDML) combined with (extended) symmetry-adapted perturbation theory is used in calculating noncovalent interactions to further show that the traditional ab initio system-specific tuning procedure can be bypassed. The present study not only provides an accurate and efficient way to determine the range-separation parameter for LRC-ωPBE but also shows the synergistic benefits of fusing the power of physically inspired density functional LRC-ωPBE and the data-driven ωGDDML model.
Collapse
Affiliation(s)
- Corentin Villot
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Tong Huang
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| |
Collapse
|
7
|
Mitchell EC, Scott TR, Bao JJ, Truhlar DG. Application of Multiconfiguration Pair-Density Functional Theory to the Diels–Alder Reaction. J Phys Chem A 2022; 126:8834-8843. [DOI: 10.1021/acs.jpca.2c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Erica C. Mitchell
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota − Twin Cities, Minneapolis, Minnesota 55455-0931, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Thais R. Scott
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota − Twin Cities, Minneapolis, Minnesota 55455-0931, United States
| | - Jie J. Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota − Twin Cities, Minneapolis, Minnesota 55455-0931, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota − Twin Cities, Minneapolis, Minnesota 55455-0931, United States
| |
Collapse
|
8
|
Mn2 Dimers Encapsulated in Silicon Cages: A Complex Challenge to MC-SCF Theory. Molecules 2022; 27:molecules27217544. [DOI: 10.3390/molecules27217544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
MC-SCF wavefunctions for three endohedral Mn/Si clusters, Mn2Si10, Mn2Si12, and [Mn2Si13]+, show evidence for strong static correlation, both in the Mn-Si bonds (’in–out correlation’) and between the two Mn centers (’up–down correlation’). We use both Restricted and Generalized Active Spaces (RAS and GAS) to place constraints on the configurations included in the trial wavefunction, showing that, particularly in the high-symmetry cases, the GAS approach captures more of the static correlation. The important correlating pairs are similar across the series, indicating that the electronic structure of the endohedral Mn2 unit is, to a first approximation, independent of the size of the silicon cage in which it is embedded.
Collapse
|
9
|
Pandharkar R, Hermes MR, Cramer CJ, Gagliardi L. Localized Active Space-State Interaction: a Multireference Method for Chemical Insight. J Chem Theory Comput 2022; 18:6557-6566. [PMID: 36257065 DOI: 10.1021/acs.jctc.2c00536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multireference electronic structure methods, like the complete active space (CAS) self-consistent field model, have long been used to characterize chemically interesting processes. Important work has been done in recent years to develop modifications having a lower computational cost than CAS, but typically these methods offer no more chemical insight than that from the CAS solution being approximated. In this paper, we present the localized active space-state interaction (LASSI) method that can be used not only to lower the intrinsic cost of the multireference calculation but also to improve interpretability. The localized active space (LAS) approach utilizes the local nature of the electron-electron correlation to express a composite wave function as an antisymmetrized product of unentangled wave functions in local active subspaces. LASSI then uses these LAS states as a basis from which to express complete molecular wave functions. This not only makes the molecular wave function more compact but also permits flexibility in choosing those states to be included in the basis. Such selective inclusion of states translates to the selective inclusion of specific types of interactions, thereby allowing a quantitative analysis of these interactions. We demonstrate the use of LASSI to study charge migration and spin-flip excitations in multireference organic molecules. We also compute the J coupling parameter for a bimetallic compound using various LAS bases to construct the Hamiltonian to provide insights into the coupling mechanism.
Collapse
Affiliation(s)
- Riddhish Pandharkar
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois60637, United States.,Argonne National Laboratory, Lemont, Illinois60439, USA
| | - Matthew R Hermes
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois60637, United States
| | - Christopher J Cramer
- Underwriters Laboratories Inc., 333 Pfingsten Road., Northbrook, Illinois60062, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois60637, United States.,Argonne National Laboratory, Lemont, Illinois60439, USA
| |
Collapse
|
10
|
Zou J, Wang Q, Ren X, Wang Y, Zhang H, Li S. Efficient Implementation of Block-Correlated Coupled Cluster Theory Based on the Generalized Valence Bond Reference for Strongly Correlated Systems. J Chem Theory Comput 2022; 18:5276-5285. [PMID: 35922401 DOI: 10.1021/acs.jctc.2c00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An optimized implementation of block-correlated coupled cluster theory based on the generalized valence bond wave function (GVB-BCCC) for the singlet ground state of strongly correlated systems is presented. The GVB-BCCC method with two-pair correlation (GVB-BCCC2b) or up to three-pair correlation (GVB-BCCC3b) will be the focus of this work. Three major techniques have been adopted to dramatically accelerate GVB-BCCC2b and GVB-BCCC3b calculations. First, the GVB-BCCC2b and GVB-BCCC3b codes are noticeably optimized by removing redundant calculations. Second, independent amplitudes are identified by constraining excited configurations to be pure singlet states and only independent amplitudes need to be solved. Third, an incremental updating scheme for the amplitudes in solving the GVB-BCCC equations is adopted. With these techniques, accurate GVB-BCCC3b calculations are now accessible for systems with relatively large active spaces (50 electrons in 50 orbitals) and GVB-BCCC2b calculations are affordable for systems with much larger active spaces. We have applied GVB-BCCC methods to investigate three typical kinds of systems: polyacenes, pentaprismane, and [Cu2O2]2+ isomers. For polyacenes, we demonstrate that GVB-BCCC3b can capture more than 94% of the total correlation energy even for 12-acene with 50 π electrons. For the potential energy curve of simultaneously stretching 15 C-C bonds in pentaprismane, our calculations show that the GVB-BCCC3b results are quite close to the results from the density matrix renormalization group (DMRG) over the whole range. For two dinuclear copper oxide isomers, their relative energy predicted by GVB-BCCC3b is also in good accord with the DMRG result. All calculations show that the inclusion of three-pair correlation in GVB-BCCC is critical for accurate descriptions of strongly correlated systems.
Collapse
Affiliation(s)
- Jingxiang Zou
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qingchun Wang
- Key Laboratory of Quantum Information, Chinese Academy of Sciences, School of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiaochuan Ren
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yuqi Wang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Haodong Zhang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shuhua Li
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
11
|
Vitillo JG, Cramer CJ, Gagliardi L. Multireference Methods are Realistic and Useful Tools for Modeling Catalysis. Isr J Chem 2022. [DOI: 10.1002/ijch.202100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jenny G. Vitillo
- Department of Science and High Technology and INSTM Università degli Studi dell'Insubria Via Valleggio 9 I-22100 Como Italy
| | - Christopher J. Cramer
- Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook Illinois 60602 United States
| | - Laura Gagliardi
- Department of Chemistry Pritzker School of Molecular Engineering James Franck Institute University of Chicago Chicago Illinois 60637 United States
| |
Collapse
|
12
|
Kupfer S, Wächtler M, Guthmuller J. Light‐Driven Multi‐Charge Separation in a Push‐Pull Ruthenium‐based Photosensitizer – Assessed by RASSCF and TDDFT Simulations. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stephan Kupfer
- Friedrich Schiller Universitat Jena Chemisch Geowissenschaftliche Fakultat Institute of Physical Chemistry Helmholtzweg 1 07743 Jena GERMANY
| | - Maria Wächtler
- Leibniz Institute of Photonic Technology: Leibniz-Institut fur Photonische Technologien Functional Interfaces GERMANY
| | - Julien Guthmuller
- Gdansk University of Technology: Politechnika Gdanska Institute of Physics and Computer Science POLAND
| |
Collapse
|
13
|
Deng D, Suo B, Zou W. New Light on an Old Story: Breaking Kasha's Rule in Phosphorescence Mechanism of Organic Boron Compounds and Molecule Design. Int J Mol Sci 2022; 23:876. [PMID: 35055059 PMCID: PMC8776103 DOI: 10.3390/ijms23020876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
In this work, the phosphorescence mechanism of (E)-3-(((4-nitrophenyl)imino)methyl)-2H-thiochroman-4-olate-BF2 compound (S-BF2) is investigated theoretically. The phosphorescence of S-BF2 has been reassigned to the second triplet state (T2) by the density matrix renormalization group (DMRG) method combined with the multi-configurational pair density functional theory (MCPDFT) to approach the limit of theoretical accuracy. The calculated radiative and non-radiative rate constants support the breakdown of Kasha's rule further. Our conclusion contradicts previous reports that phosphorescence comes from the first triplet state (T1). Based on the revised phosphorescence mechanism, we have purposefully designed some novel compounds in theory to enhance the phosphorescence efficiency from T2 by replacing substitute groups in S-BF2. Overall, both S-BF2 and newly designed high-efficiency molecules exhibit anti-Kasha T2 phosphorescence instead of the conventional T1 emission. This work provides a useful guidance for future design of high-efficiency green-emitting phosphors.
Collapse
Affiliation(s)
- Dan Deng
- Institute of Modern Physics, Northwest University, Xi’an 710127, China;
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China
| | - Bingbing Suo
- Institute of Modern Physics, Northwest University, Xi’an 710127, China;
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, Xi’an 710127, China;
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China
| |
Collapse
|
14
|
Zhou C, Hermes MR, Wu D, Bao JJ, Pandharkar R, King DS, Zhang D, Scott TR, Lykhin AO, Gagliardi L, Truhlar DG. Electronic structure of strongly correlated systems: recent developments in multiconfiguration pair-density functional theory and multiconfiguration nonclassical-energy functional theory. Chem Sci 2022; 13:7685-7706. [PMID: 35865899 PMCID: PMC9261488 DOI: 10.1039/d2sc01022d] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
Strong electron correlation plays an important role in transition-metal and heavy-metal chemistry, magnetic molecules, bond breaking, biradicals, excited states, and many functional materials, but it provides a significant challenge for modern electronic structure theory. The treatment of strongly correlated systems usually requires a multireference method to adequately describe spin densities and near-degeneracy correlation. However, quantitative computation of dynamic correlation with multireference wave functions is often difficult or impractical. Multiconfiguration pair-density functional theory (MC-PDFT) provides a way to blend multiconfiguration wave function theory and density functional theory to quantitatively treat both near-degeneracy correlation and dynamic correlation in strongly correlated systems; it is more affordable than multireference perturbation theory, multireference configuration interaction, or multireference coupled cluster theory and more accurate for many properties than Kohn–Sham density functional theory. This perspective article provides a brief introduction to strongly correlated systems and previously reviewed progress on MC-PDFT followed by a discussion of several recent developments and applications of MC-PDFT and related methods, including localized-active-space MC-PDFT, generalized active-space MC-PDFT, density-matrix-renormalization-group MC-PDFT, hybrid MC-PDFT, multistate MC-PDFT, spin–orbit coupling, analytic gradients, and dipole moments. We also review the more recently introduced multiconfiguration nonclassical-energy functional theory (MC-NEFT), which is like MC-PDFT but allows for other ingredients in the nonclassical-energy functional. We discuss two new kinds of MC-NEFT methods, namely multiconfiguration density coherence functional theory and machine-learned functionals. This feature article overviews recent work on active spaces, matrix product reference states, treatment of quasidegeneracy, hybrid theory, density-coherence functionals, machine-learned functionals, spin–orbit coupling, gradients, and dipole moments.![]()
Collapse
Affiliation(s)
- Chen Zhou
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | - Matthew R. Hermes
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Dihua Wu
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | - Jie J. Bao
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | - Riddhish Pandharkar
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Daniel S. King
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Dayou Zhang
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | - Thais R. Scott
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Aleksandr O. Lykhin
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| |
Collapse
|
15
|
Boyn JN, Lykhin AO, Smart SE, Gagliardi L, Mazziotti DA. Quantum-classical hybrid algorithm for the simulation of all-electron correlation. J Chem Phys 2021; 155:244106. [PMID: 34972365 DOI: 10.1063/5.0074842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
While chemical systems containing hundreds to thousands of electrons remain beyond the reach of quantum devices, hybrid quantum-classical algorithms present a promising pathway toward a quantum advantage. Hybrid algorithms treat the exponentially scaling part of the calculation-the static correlation-on the quantum computer and the non-exponentially scaling part-the dynamic correlation-on the classical computer. While a variety of algorithms have been proposed, the dependence of many methods on the total wave function limits the development of easy-to-use classical post-processing implementations. Here, we present a novel combination of quantum and classical algorithms, which computes the all-electron energy of a strongly correlated molecular system on the classical computer from the 2-electron reduced density matrix (2-RDM) evaluated on the quantum device. Significantly, we circumvent the wave function in the all-electron calculations by using density matrix methods that only require input of the statically correlated 2-RDM. Although the algorithm is completely general, we test it with two classical density matrix methods, the anti-Hermitian contracted Schrödinger equation (ACSE) and multiconfiguration pair-density functional theories, using the recently developed quantum ACSE method for simulating the statically correlated 2-RDM. We obtain experimental accuracy for the relative energies of all three benzyne isomers and thereby demonstrate the ability of the developed algorithm to achieve chemically relevant and accurate results on noisy intermediate-scale quantum devices.
Collapse
Affiliation(s)
- Jan-Niklas Boyn
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Aleksandr O Lykhin
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Scott E Smart
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Laura Gagliardi
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - David A Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
16
|
Sand AM, Malme JT, Hoy EP. A multiconfiguration pair-density functional theory-based approach to molecular junctions. J Chem Phys 2021; 155:114115. [PMID: 34551556 DOI: 10.1063/5.0063293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Due to their small size and unique properties, single-molecule electronics have long seen research interest from experimentalists and theoreticians alike. From a theoretical standpoint, modeling these systems using electronic structure theory can be difficult due to the importance of electron correlation in the determination of molecular properties, and this electron correlation can be computationally expensive to consider, particularly multiconfigurational correlation energy. In this work, we develop a new approach for the study of single-molecule electronic systems, denoted NEGF-MCPDFT, which combines multiconfiguration pair-density functional theory (MCPDFT) with the non-equilibrium Green's function formalism (NEGF). The use of MCPDFT with NEGF allows for the efficient inclusion of both static and dynamic electron correlations in the description of the junction's electronic structure. Complete active space self-consistent field wave functions are used as references in the MCPDFT calculation, and as with any active space method, effort must be made to determine the proper orbital character to include in the active space. We perform conductance and transmission calculations on a series of alkanes (predominantly single-configurational character) and benzyne (multiconfigurational character), exploring the role that active space selection has on the computed results. For the alkane junctions explored (where dynamic electron correlation dominates), the MCPDFT-NEGF results agree well with the DFT-NEGF results. For the benzyne junction (which has a significant static correlation), we see clear differences in the MCPDFT-NEGF and DFT-NEGF results and evidence that NEGF-MCPDFT is capturing additional electron correlation effects beyond those provided by the Perdew-Burke-Ernzerhof functional.
Collapse
Affiliation(s)
- Andrew M Sand
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, USA
| | - Justin T Malme
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, USA
| | - Erik P Hoy
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, USA
| |
Collapse
|
17
|
Park JW. Near-Exact CASSCF-Level Geometry Optimization with a Large Active Space using Adaptive Sampling Configuration Interaction Self-Consistent Field Corrected with Second-Order Perturbation Theory (ASCI-SCF-PT2). J Chem Theory Comput 2021; 17:4092-4104. [PMID: 34096306 DOI: 10.1021/acs.jctc.1c00272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An accurate description of electron correlation is one of the most challenging problems in quantum chemistry. The exact electron correlation can be obtained by means of full configuration interaction (FCI). A simple strategy for approximating FCI at a reduced computational cost is selected CI (SCI), which diagonalizes the Hamiltonian within only the chosen configuration space. Recovery of the contributions of the remaining configurations is possible with second-order perturbation theory. Here, we apply adaptive sampling configuration interaction (ASCI) combined with molecular orbital optimizations (ASCI-SCF) corrected with second-order perturbation theory (ASCI-SCF-PT2) for geometry optimization by implementing the analytical nuclear gradient algorithm for ASCI-PT2 with the Z-vector (Lagrangian) formalism. We demonstrate that for phenalenyl radicals and anthracene, optimized geometries and the number of unpaired electrons can be obtained at nearly the CASSCF accuracy by incorporating PT2 corrections and extrapolating them. We demonstrate the current algorithm's utility for optimizing the equilibrium geometries and electronic structures of six-ring-fused polycyclic aromatic hydrocarbons and 4-periacene.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
18
|
Morgan HWT, Csizi KS, Huang YS, Sun ZM, McGrady JE. Open Shells in Endohedral Clusters: Structure and Bonding in the [Fe 2@Ge 16] 4- Anion and Comparison to Isostructural [Co 2@Ge 16] 4. J Phys Chem A 2021; 125:4578-4588. [PMID: 34014678 DOI: 10.1021/acs.jpca.1c02837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anionic cluster [Fe2@Ge16]4- has been characterized and shown to be isostructural to the known D2h-symmetric α isomer of the cobalt analogue [Co2@Ge16]4-. Together with the known pair of compounds [Co@Ge10]3- and [Fe@Ge10]3-, the title compound completes a set of four closely related germanium clusters that allow us to explore how the metal-metal and metal-cage interactions evolve as a function of size and of the identity of the metal. The results of spin-unrestricted density functional theory (DFT) and multiconfigurational self-consistent field (MC-SCF) calculations present a consistent picture of the electronic structure where transfer of electron density from the metal to the cage is significant, particularly in the Fe clusters where the exchange stabilization of unpaired spin density is an important driving force.
Collapse
Affiliation(s)
- Harry W T Morgan
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Katja-Sophia Csizi
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Ya-Shan Huang
- Tianjin Key Lab of Rare Earth Materials and Applications, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhong-Ming Sun
- Tianjin Key Lab of Rare Earth Materials and Applications, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - John E McGrady
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| |
Collapse
|
19
|
Pandharkar R, Hermes MR, Cramer CJ, Truhlar DG, Gagliardi L. Localized Active Space Pair-Density Functional Theory. J Chem Theory Comput 2021; 17:2843-2851. [PMID: 33900078 DOI: 10.1021/acs.jctc.1c00067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate quantum chemical methods for the prediction of spin-state energy gaps for strongly correlated systems are computationally expensive and scale poorly with the size of the system. This makes calculations for many experimentally interesting molecules impractical even with abundant computational resources. Previous work has shown that the localized active space (LAS) self-consistent field (SCF) method can be an efficient way to obtain multiconfiguration SCF wave functions of comparable quality to the corresponding complete active space (CAS) ones. To obtain quantitative results, a post-SCF method is needed to estimate the complete correlation energy. One such method is multiconfiguration pair-density functional theory (PDFT), which calculates the energy based on the density and on-top pair density obtained from a multiconfiguration wave function. In this work, we introduce localized-active-space PDFT, which uses a LAS wave function for subsequent PDFT calculations. The method is tested by computing spin-state energies and gaps in conjugated organic molecules and a bimetallic compound and comparing to the corresponding CAS-PDFT values.
Collapse
Affiliation(s)
- Riddhish Pandharkar
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Matthew R Hermes
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Abstract
Kohn-Sham density functional theory with the available exchange-correlation functionals is less accurate for strongly correlated systems, which require a multiconfigurational description as a zero-order function, than for weakly correlated systems, and available functionals of the spin densities do not accurately predict energies for many strongly correlated systems when one uses multiconfigurational wave functions with spin symmetry. Furthermore, adding a correlation functional to a multiconfigurational reference energy can lead to double counting of electron correlation. Multiconfiguration pair-density functional theory (MC-PDFT) overcomes both obstacles, the second by calculating the quantum mechanical part of the electronic energy entirely by a functional, and the first by using a functional of the total density and the on-top pair density rather than the spin densities. This allows one to calculate the energy of strongly correlated systems efficiently with a pair-density functional and a suitable multiconfigurational reference function. This article reviews MC-PDFT and related background information.
Collapse
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| | - Jie J Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
21
|
Meitei OR, Mayhall NJ. Spin-Flip Pair-Density Functional Theory: A Practical Approach To Treat Static and Dynamical Correlations in Large Molecules. J Chem Theory Comput 2021; 17:2906-2916. [PMID: 33861603 DOI: 10.1021/acs.jctc.1c00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a practical approach to treat static and dynamical correlation accurately in large multiconfigurational systems. The static correlation is taken into account by using the spin-flip approach, which is well-known for capturing static correlation accurately at low-computational expense. Unlike previous approaches to add dynamical correlation to spin-flip models which use perturbation theory or coupled-cluster theory, we explore the ability to use the on-top pair-density functional theory approaches recently developed by Gagliardi and co-workers (J. Comput. Theor. Chem., 2014, 10, 3669). External relaxations are performed in the spin-flip calculations through a restricted active space framework for which a truncation scheme for the orbitals used in the external excitation is presented. The performance of the approach is demonstrated by computing energy gaps between ground and excited states for diradicals, triradicals, and linear polyacene chains ranging from naphthalene to dodecacene. Accurate results are obtained using the new approach for these challenging open-shell molecular systems.
Collapse
Affiliation(s)
- Oinam Romesh Meitei
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas J Mayhall
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
22
|
Park JW. Second-Order Orbital Optimization with Large Active Spaces Using Adaptive Sampling Configuration Interaction (ASCI) and Its Application to Molecular Geometry Optimization. J Chem Theory Comput 2021; 17:1522-1534. [DOI: 10.1021/acs.jctc.0c01292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
23
|
Abstract
Singlet fission (SF) is a photophysical downconversion pathway, in which a singlet excitation transforms into two triplet excited states. As such, it constitutes an exciton multiplication generation process, which is currently at the focal point for future integration into solar energy conversion devices. Beyond this, various other exciting applications were proposed, including quantum cryptography or organic light emitting diodes. Also, the mechanistic understanding evolved rapidly during the last year. Unfortunately, the number of suitable SF-chromophores is still limited. This is per se problematic, considering the wide range of envisaged applicability. With that in mind, we emphasize uncommon SF-scaffolds and outline requirements as well as strategies to expand the chromophore pool of SF-materials.
Collapse
Affiliation(s)
- Tobias Ullrich
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department für Chemie und Pharmazie, Egerlandstr. 1-3, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
24
|
Tran HK, Ye HZ, Van Voorhis T. Bootstrap embedding with an unrestricted mean-field bath. J Chem Phys 2020; 153:214101. [PMID: 33291897 DOI: 10.1063/5.0029092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A suite of quantum embedding methods have recently been developed where the Schmidt decomposition is applied to the full system wavefunction to derive basis states that preserve the entanglement between the fragment and the bath. The quality of these methods can depend heavily on the quality of the initial full system wavefunction. Most of these methods, including bootstrap embedding (BE) [M. Welborn et al; J. Chem. Phys. 145, 074102 (2016)], start from a spin-restricted mean-field wavefunction [call this restricted BE (RBE)]. Given that spin-unrestricted wavefunctions can capture a significant amount of strong correlation at the mean-field level, we suspect that starting from a spin-unrestricted mean-field wavefunction will improve these embedding methods for strongly correlated systems. In this work, BE is generalized to an unrestricted Hartree-Fock bath [call this unrestricted BE (UBE)], and UBE is applied to model hydrogen ring systems. UBE's improved versatility over RBE is utilized to calculate high spin symmetry states that were previously unattainable with RBE. Ionization potentials, electron affinities, and spin-splittings are computed using UBE with accuracy on par with spin-unrestricted coupled cluster singles and doubles. Even for cases where RBE is viable, UBE converges more reliably. We discuss the limitations or weaknesses of each calculation and how improvements to RBE and density matrix embedding theory these past few years can also improve UBE.
Collapse
Affiliation(s)
- Henry K Tran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hong-Zhou Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
25
|
Conti I, Cerullo G, Nenov A, Garavelli M. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where We Stand Today and Where We Are Going. J Am Chem Soc 2020; 142:16117-16139. [PMID: 32841559 PMCID: PMC7901644 DOI: 10.1021/jacs.0c04952] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Computational spectroscopy is becoming a mandatory tool for the interpretation of the
complex, and often congested, spectral maps delivered by modern non-linear multi-pulse
techniques. The fields of Electronic Structure Methods,
Non-Adiabatic Molecular Dynamics, and Theoretical
Spectroscopy represent the three pillars of the virtual ultrafast
optical spectrometer, able to deliver transient spectra in
silico from first principles. A successful simulation strategy requires a
synergistic approach that balances between the three fields, each one having its very
own challenges and bottlenecks. The aim of this Perspective is to demonstrate that,
despite these challenges, an impressive agreement between theory and experiment is
achievable now regarding the modeling of ultrafast photoinduced processes in complex
molecular architectures. Beyond that, some key recent developments in the three fields
are presented that we believe will have major impacts on spectroscopic simulations in
the very near future. Potential directions of development, pending challenges, and
rising opportunities are illustrated.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
26
|
Jiang H, Zimmerman PM. Charge transfer via spin flip configuration interaction: Benchmarks and application to singlet fission. J Chem Phys 2020; 153:064109. [DOI: 10.1063/5.0018267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Hanjie Jiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
27
|
Salvitti G, Negri F, Pérez-Jiménez ÁJ, San-Fabián E, Casanova D, Sancho-García JC. Investigating the (Poly)Radicaloid Nature of Real-World Organic Compounds with DFT-Based Methods. J Phys Chem A 2020; 124:3590-3600. [DOI: 10.1021/acs.jpca.0c01239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giovanna Salvitti
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, IT-40126 Bologna, Italy
| | - Fabrizia Negri
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, IT-40126 Bologna, Italy
- INSTM UdR Bologna, 40136 Bologna, Italy
| | | | - Emilio San-Fabián
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), E-20018 Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
| | | |
Collapse
|
28
|
Levine DS, Hait D, Tubman NM, Lehtola S, Whaley KB, Head-Gordon M. CASSCF with Extremely Large Active Spaces Using the Adaptive Sampling Configuration Interaction Method. J Chem Theory Comput 2020; 16:2340-2354. [PMID: 32109055 DOI: 10.1021/acs.jctc.9b01255] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The complete active space self-consistent field (CASSCF) method is the principal approach employed for studying strongly correlated systems. However, exact CASSCF can only be performed on small active spaces of ∼20 electrons in ∼20 orbitals due to exponential growth in the computational cost. We show that employing the Adaptive Sampling Configuration Interaction (ASCI) method as an approximate Full CI solver in the active space allows CASSCF-like calculations within chemical accuracy (<1 kcal/mol for relative energies) in active spaces with more than ∼50 active electrons in ∼50 active orbitals, significantly increasing the sizes of systems amenable to accurate multiconfigurational treatment. The main challenge with using any selected CI-based approximate CASSCF is the orbital optimization problem; they tend to exhibit large numbers of local minima in orbital space due to their lack of invariance to active-active rotations (in addition to the local minima that exist in exact CASSCF). We highlight methods that can avoid spurious local extrema as a practical solution to the orbital optimization problem. We employ ASCI-SCF to demonstrate a lack of polyradical character in moderately sized periacenes with up to 52 correlated electrons and compare against heat-bath CI on an iron porphyrin system with more than 40 correlated electrons.
Collapse
Affiliation(s)
- Daniel S Levine
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, Berkeley, California 94720, United States
| | - Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, Berkeley, California 94720, United States
| | - Norm M Tubman
- Quantum Artificial Intelligence Lab (QuAIL), Exploration Technology Directorate, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Susi Lehtola
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, Berkeley, California 94720, United States
| | - K Birgitta Whaley
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Sand AM, Kidder KM, Truhlar DG, Gagliardi L. Calculation of Chemical Reaction Barrier Heights by Multiconfiguration Pair-Density Functional Theory with Correlated Participating Orbitals. J Phys Chem A 2019; 123:9809-9817. [PMID: 31609619 DOI: 10.1021/acs.jpca.9b08134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The accurate description of reaction barrier heights is challenging for quantum mechanical methods due to the need for a balanced treatment of dynamic and static correlation energies because their importance varies during the course of a chemical reaction. While some regions of potential energy surfaces are well-described by a single-reference wave function or by Kohn-Sham density functional theory, in other cases a multireference treatment is needed. For systems with many active electrons, most accurate multireference methods have prohibitive computational scalings with system size. Multiconfiguration pair-density functional theory, MC-PDFT, is a more affordable multireference approach that computes the total electron correlation energy in a single step by using the multiconfiguration kinetic energy, density, and on-top pair density and an on-top density functional. In this work, we apply MC-PDFT to a benchmark database (DBH24/18) of 24 diverse reaction barrier heights. We explore the role of active space and basis set selection on the performance of MC-PDFT. We find that MC-PDFT is able to calculate reaction barrier heights with a similar accuracy to complete active space second order perturbation theory, CASPT2, but at a lower computational cost, and we find that MC-PDFT is less dependent on basis set selection than CASPT2.
Collapse
Affiliation(s)
- Andrew M Sand
- Department of Chemistry, Chemical Theory Center, and the Minnesota Supercomputing Institute , The University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry and Biochemistry , Butler University , Indianapolis , Indiana 46208 , United States
| | - Katherine M Kidder
- Department of Chemistry, Chemical Theory Center, and the Minnesota Supercomputing Institute , The University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and the Minnesota Supercomputing Institute , The University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and the Minnesota Supercomputing Institute , The University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
30
|
Mullinax JW, Maradzike E, Koulias LN, Mostafanejad M, Epifanovsky E, Gidofalvi G, DePrince AE. Heterogeneous CPU + GPU Algorithm for Variational Two-Electron Reduced-Density Matrix-Driven Complete Active-Space Self-Consistent Field Theory. J Chem Theory Comput 2019; 15:6164-6178. [DOI: 10.1021/acs.jctc.9b00768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Wayne Mullinax
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Elvis Maradzike
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Lauren N. Koulias
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Mohammad Mostafanejad
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, United States
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
31
|
Fdez. Galván I, Vacher M, Alavi A, Angeli C, Aquilante F, Autschbach J, Bao JJ, Bokarev SI, Bogdanov NA, Carlson RK, Chibotaru LF, Creutzberg J, Dattani N, Delcey MG, Dong SS, Dreuw A, Freitag L, Frutos LM, Gagliardi L, Gendron F, Giussani A, González L, Grell G, Guo M, Hoyer CE, Johansson M, Keller S, Knecht S, Kovačević G, Källman E, Li Manni G, Lundberg M, Ma Y, Mai S, Malhado JP, Malmqvist PÅ, Marquetand P, Mewes SA, Norell J, Olivucci M, Oppel M, Phung QM, Pierloot K, Plasser F, Reiher M, Sand AM, Schapiro I, Sharma P, Stein CJ, Sørensen LK, Truhlar DG, Ugandi M, Ungur L, Valentini A, Vancoillie S, Veryazov V, Weser O, Wesołowski TA, Widmark PO, Wouters S, Zech A, Zobel JP, Lindh R. OpenMolcas: From Source Code to Insight. J Chem Theory Comput 2019; 15:5925-5964. [DOI: 10.1021/acs.jctc.9b00532] [Citation(s) in RCA: 399] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Fdez. Galván
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
- Department of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Morgane Vacher
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Ali Alavi
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Celestino Angeli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Francesco Aquilante
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jie J. Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Sergey I. Bokarev
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Nikolay A. Bogdanov
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Rebecca K. Carlson
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Liviu F. Chibotaru
- Theory of Nanomaterials Group, University of Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Joel Creutzberg
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Nike Dattani
- Harvard Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Mickaël G. Delcey
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Sijia S. Dong
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205 A, 69120 Heidelberg, Germany
| | - Leon Freitag
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Luis Manuel Frutos
- Departamento de Química Analítica, Química Física e Ingeniería Química, and Instituto de Investigación Química “Andrés M. del Río”, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Frédéric Gendron
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Angelo Giussani
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Instituto de Ciencia Molecular, Universitat de València, Apartado 22085, ES-46071 Valencia, Spain
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Gilbert Grell
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Meiyuan Guo
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Chad E. Hoyer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marcus Johansson
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sebastian Keller
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stefan Knecht
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Goran Kovačević
- Division of Materials Physics, Ruđer Bošković Institute, P.O.B. 180, Bijenička 54, HR-10002 Zagreb, Croatia
| | - Erik Källman
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Giovanni Li Manni
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marcus Lundberg
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Yingjin Ma
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - João Pedro Malhado
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Per Åke Malmqvist
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Stefanie A. Mewes
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205 A, 69120 Heidelberg, Germany
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (NZIAS), Massey University Albany, Private Bag
102904, Auckland 0632, New Zealand
| | - Jesper Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, 53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- USIAS and Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS, 67034 Strasbourg, France
| | - Markus Oppel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Quan Manh Phung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Andrew M. Sand
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prachi Sharma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Stein
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Lasse Kragh Sørensen
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Mihkel Ugandi
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Alessio Valentini
- Theoretical Physical Chemistry, Research Unit MolSys, Allée du 6 Août, 11, 4000 Liège, Belgium
| | - Steven Vancoillie
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Valera Veryazov
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Oskar Weser
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Tomasz A. Wesołowski
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Per-Olof Widmark
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sebastian Wouters
- Brantsandpatents, Pauline van Pottelsberghelaan 24, 9051 Sint-Denijs-Westrem, Belgium
| | - Alexander Zech
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - J. Patrick Zobel
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Roland Lindh
- Department of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
- Uppsala Center for Computational Chemistry (UC3), Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
32
|
Shee J, Arthur EJ, Zhang S, Reichman DR, Friesner RA. Singlet–Triplet Energy Gaps of Organic Biradicals and Polyacenes with Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2019; 15:4924-4932. [DOI: 10.1021/acs.jctc.9b00534] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- James Shee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Evan J. Arthur
- Schrodinger Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, United States
| | - David R. Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
33
|
Scott T, Nieman R, Luxon A, Zhang B, Lischka H, Gagliardi L, Parish CA. A Multireference Ab Initio Study of the Diradical Isomers of Pyrazine. J Phys Chem A 2019; 123:2049-2057. [DOI: 10.1021/acs.jpca.8b12440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thais Scott
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond Virginia 23713, United States
- Department of Chemistry, Chemical Theory Center and the Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Adam Luxon
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond Virginia 23713, United States
| | - Boyi Zhang
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond Virginia 23713, United States
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, 300072 P.R. China
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center and the Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carol A. Parish
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond Virginia 23713, United States
| |
Collapse
|
34
|
Mostafanejad M, DePrince AE. Combining Pair-Density Functional Theory and Variational Two-Electron Reduced-Density Matrix Methods. J Chem Theory Comput 2018; 15:290-302. [DOI: 10.1021/acs.jctc.8b00988] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammad Mostafanejad
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
35
|
Wang Q, Zou J, Xu E, Pulay P, Li S. Automatic Construction of the Initial Orbitals for Efficient Generalized Valence Bond Calculations of Large Systems. J Chem Theory Comput 2018; 15:141-153. [PMID: 30481019 DOI: 10.1021/acs.jctc.8b00854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We propose an efficient general strategy for generating initial orbitals for generalized valence bond (GVB) calculations which makes routine black-box GVB calculations on large systems feasible. Two schemes are proposed, depending on whether the restricted Hartree-Fock (RHF) wave function is stable (scheme I) or not (scheme II). In both schemes, the first step is the construction of active occupied orbitals and active virtual orbitals. In scheme I, active occupied orbitals are composed of the valence orbitals (the inner core orbitals are excluded), and the active virtual orbitals are obtained from the original virtual space by requiring its maximum overlap with the virtual orbital space of the same system at a minimal basis set. In scheme II, active occupied orbitals and active virtual orbitals are obtained from the set of unrestricted natural orbitals (UNOs), which are transformed from two sets of unrestricted HF spatial orbitals. In the next step, the active occupied orbitals and active virtual ones are separately transformed to localized orbitals. Localized occupied and virtual orbital pairs are formed using the Kuhn-Munkres (KM) algorithm and are used as the initial guess for the GVB orbitals. The optimized GVB wave function is obtained using the second-order self-consistent-field algorithm in the GAMESS program. With this procedure, GVB energies have been obtained for the lowest singlet and triplet states of polyacenes (up to decacene with 96 pairs) and the singlet ground state of two di-copper-oxygen-ammonia complexes. We have also calculated the singlet-triplet gaps for some polyacenes and the relative energy between two di-copper-oxygen-ammonia complexes with the block-correlated second-order perturbation theory based on the GVB reference.
Collapse
Affiliation(s)
- Qingchun Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry , Nanjing University , Nanjing 210023 , P. R. China
| | - Jingxiang Zou
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry , Nanjing University , Nanjing 210023 , P. R. China
| | - Enhua Xu
- Graduate School of Science, Technology, and Innovation , Kobe University , Nada-ku, Kobe 657-8501 , Japan
| | - Peter Pulay
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
36
|
Mullinax JW, Epifanovsky E, Gidofalvi G, DePrince AE. Analytic Energy Gradients for Variational Two-Electron Reduced-Density Matrix Methods within the Density Fitting Approximation. J Chem Theory Comput 2018; 15:276-289. [DOI: 10.1021/acs.jctc.8b00973] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J. Wayne Mullinax
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, United States
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
37
|
Sharma P, Bernales V, Knecht S, Truhlar DG, Gagliardi L. Density matrix renormalization group pair-density functional theory (DMRG-PDFT): singlet-triplet gaps in polyacenes and polyacetylenes. Chem Sci 2018; 10:1716-1723. [PMID: 30842836 PMCID: PMC6368241 DOI: 10.1039/c8sc03569e] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/23/2018] [Indexed: 11/21/2022] Open
Abstract
The density matrix renormalization group (DMRG) is a powerful method to treat static correlation.
The density matrix renormalization group (DMRG) is a powerful method to treat static correlation. Here we present an inexpensive way to calculate correlation energy starting from a DMRG wave function using pair-density functional theory (PDFT). We applied this new approach, called DMRG-PDFT, to study singlet–triplet gaps in polyacenes and polyacetylenes that require active spaces larger than the feasibility limit of the conventional complete active-space self-consistent field (CASSCF) method. The results match reasonably well with the most reliable literature values and have only a moderate dependence on the compression of the initial DMRG wave function. Furthermore, DMRG-PDFT is significantly less expensive than other commonly applied ways of adding additional correlation to DMRG, such as DMRG followed by multireference perturbation theory or multireference configuration interaction.
Collapse
Affiliation(s)
- Prachi Sharma
- Department of Chemistry , Chemical Theory Center , Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455 , USA . ;
| | - Varinia Bernales
- Department of Chemistry , Chemical Theory Center , Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455 , USA . ;
| | - Stefan Knecht
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , CH-8093 Zürich , Switzerland .
| | - Donald G Truhlar
- Department of Chemistry , Chemical Theory Center , Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455 , USA . ;
| | - Laura Gagliardi
- Department of Chemistry , Chemical Theory Center , Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455 , USA . ;
| |
Collapse
|
38
|
Schriber JB, Hannon KP, Li C, Evangelista FA. A Combined Selected Configuration Interaction and Many-Body Treatment of Static and Dynamical Correlation in Oligoacenes. J Chem Theory Comput 2018; 14:6295-6305. [DOI: 10.1021/acs.jctc.8b00877] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jeffrey B. Schriber
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Kevin P. Hannon
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
39
|
Ghosh S, Verma P, Cramer CJ, Gagliardi L, Truhlar DG. Combining Wave Function Methods with Density Functional Theory for Excited States. Chem Rev 2018; 118:7249-7292. [PMID: 30044618 DOI: 10.1021/acs.chemrev.8b00193] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We review state-of-the-art electronic structure methods based both on wave function theory (WFT) and density functional theory (DFT). Strengths and limitations of both the wave function and density functional based approaches are discussed, and modern attempts to combine these two methods are presented. The challenges in modeling excited-state chemistry using both single-reference and multireference methods are described. Topics covered include background, combining density functional theory with single-configuration wave function theory, generalized Kohn-Sham (KS) theory, global hybrids, range-separated hybrids, local hybrids, using KS orbitals in many-body theory (including calculations of the self-energy and the GW approximation), Bethe-Salpeter equation, algorithms to accelerate GW calculations, combining DFT with multiconfigurational WFT, orbital-dependent correlation functionals based on multiconfigurational WFT, building multiconfigurational wave functions from KS configurations, adding correlation functionals to multiconfiguration self-consistent-field (MCSCF) energies, combining DFT with configuration-interaction singles by means of time-dependent DFT, using range separation to combine DFT with MCSCF, embedding multiconfigurational WFT in DFT, and multiconfiguration pair-density functional theory.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Pragya Verma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
40
|
Evangelista FA. Perspective: Multireference coupled cluster theories of dynamical electron correlation. J Chem Phys 2018; 149:030901. [DOI: 10.1063/1.5039496] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Francesco A. Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
41
|
Sand AM, Hoyer CE, Truhlar DG, Gagliardi L. State-interaction pair-density functional theory. J Chem Phys 2018; 149:024106. [DOI: 10.1063/1.5036727] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Andrew M. Sand
- Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Chad E. Hoyer
- Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
42
|
Wen J, Han B, Havlas Z, Michl J. An MS-CASPT2 Calculation of the Excited Electronic States of an Axial Difluoroborondipyrromethene (BODIPY) Dimer. J Chem Theory Comput 2018; 14:4291-4297. [PMID: 29874458 DOI: 10.1021/acs.jctc.8b00136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The previously reported ( Duman et al., J. Org. Chem . 2012 , 77 , 4516 ) calculated state energies of monomeric difluoroborondipyrromethene (BODIPY) and its axial dimer would suggest that these dyes are promising candidates for singlet fission, and the dimer was computed to have an unusual low-lying doubly excited state. We find that these results were affected by the use of an imbalanced active space in multireference calculations and are not correct. Multistate complete-active-space second-order perturbation theory (MS-CASPT2/cc-pVDZ) calculations using an [8,8] (8 electrons in 8 orbitals) active space for the monomer and a [16,16] active space for the dimer reproduce quite well the observed excitation energies of the S1 states of both, and yield T1 excitation energies well in excess of half of the S1 excitation energies. We conclude that neither BODIPY monomer nor its axial dimer would permit exothermic singlet fission and are not worthy of investigation as potentially useful candidates, and that the unusual low-energy doubly excited states of the dimer were artifacts.
Collapse
Affiliation(s)
- Jin Wen
- Institute of Organic Chemistry and Biochemistry , AS CR , Flemingovo nám. 2 , 16610 Prague 6 , Czech Republic
| | - Bowen Han
- Department of Chemistry and Biochemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
| | - Zdeněk Havlas
- Institute of Organic Chemistry and Biochemistry , AS CR , Flemingovo nám. 2 , 16610 Prague 6 , Czech Republic
| | - Josef Michl
- Institute of Organic Chemistry and Biochemistry , AS CR , Flemingovo nám. 2 , 16610 Prague 6 , Czech Republic.,Department of Chemistry and Biochemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
| |
Collapse
|
43
|
Ibanez JG, Rincón ME, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem Rev 2018; 118:4731-4816. [DOI: 10.1021/acs.chemrev.7b00482] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge G. Ibanez
- Departamento de Ingeniería y Ciencias Químicas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, 01219 Ciudad de México, Mexico
| | - Marina. E. Rincón
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580, Temixco, MOR, Mexico
| | - Silvia Gutierrez-Granados
- Departamento de Química, DCNyE, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito
de Rocha, 36080 Guanajuato, GTO Mexico
| | - M’hamed Chahma
- Laurentian University, Department of Chemistry & Biochemistry, Sudbury, ON P3E2C6, Canada
| | - Oscar A. Jaramillo-Quintero
- CONACYT-Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580 Temixco, MOR, Mexico
| | - Bernardo A. Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca 50200, Estado de México Mexico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito
exterior Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
44
|
Li Manni G, Alavi A. Understanding the Mechanism Stabilizing Intermediate Spin States in Fe(II)-Porphyrin. J Phys Chem A 2018; 122:4935-4947. [DOI: 10.1021/acs.jpca.7b12710] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Giovanni Li Manni
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
45
|
Bao JJ, Dong SS, Gagliardi L, Truhlar DG. Automatic Selection of an Active Space for Calculating Electronic Excitation Spectra by MS-CASPT2 or MC-PDFT. J Chem Theory Comput 2018; 14:2017-2025. [DOI: 10.1021/acs.jctc.8b00032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jie J. Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Sijia S. Dong
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
46
|
Pham HQ, Bernales V, Gagliardi L. Can Density Matrix Embedding Theory with the Complete Activate Space Self-Consistent Field Solver Describe Single and Double Bond Breaking in Molecular Systems? J Chem Theory Comput 2018; 14:1960-1968. [DOI: 10.1021/acs.jctc.7b01248] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hung Q. Pham
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Varinia Bernales
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
47
|
Stoneburner SJ, Truhlar DG, Gagliardi L. MC-PDFT can calculate singlet–triplet splittings of organic diradicals. J Chem Phys 2018; 148:064108. [DOI: 10.1063/1.5017132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Samuel J. Stoneburner
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, USA
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
48
|
Barca GMJ, Gilbert ATB, Gill PMW. Simple Models for Difficult Electronic Excitations. J Chem Theory Comput 2018; 14:1501-1509. [DOI: 10.1021/acs.jctc.7b00994] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Giuseppe M. J. Barca
- Research School of Chemistry, Australian National University, Acton ACT 2601, Australia
| | - Andrew T. B. Gilbert
- Research School of Chemistry, Australian National University, Acton ACT 2601, Australia
| | - Peter M. W. Gill
- Research School of Chemistry, Australian National University, Acton ACT 2601, Australia
| |
Collapse
|
49
|
Sharma P, Truhlar DG, Gagliardi L. Active Space Dependence in Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2018; 14:660-669. [DOI: 10.1021/acs.jctc.7b01052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
50
|
Pérez-Guardiola A, Sandoval-Salinas ME, Casanova D, San-Fabián E, Pérez-Jiménez AJ, Sancho-García JC. The role of topology in organic molecules: origin and comparison of the radical character in linear and cyclic oligoacenes and related oligomers. Phys Chem Chem Phys 2018; 20:7112-7124. [DOI: 10.1039/c8cp00135a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We discuss the nature of electron-correlation effects in carbon nanorings and nanobelts by a combined approach based on FT-DFT and RAS-SF methods.
Collapse
Affiliation(s)
- A. Pérez-Guardiola
- Department of Physical Chemistry
- University of Alicante
- E-03080 Alicante
- Spain
| | - M. E. Sandoval-Salinas
- Departament de Ciéncia de Materials i Química Física
- Institut de Química Teòrica i Computacional (IQTCUB)
- Universitat de Barcelona
- E-08028 Barcelona
- Spain
| | - D. Casanova
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC)
- E-20018 Donostia
- Spain
- IKERBASQUE
| | - E. San-Fabián
- Department of Physical Chemistry
- University of Alicante
- E-03080 Alicante
- Spain
| | | | | |
Collapse
|