1
|
Peng N, Li J, Hua Y, Zhao S, Li G. Lanthanide-Polyoxometalate-Based Film with Reversible Photochromism and Luminescent Switching Properties for Erasable Inkless Security Printing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7973-7982. [PMID: 38291594 DOI: 10.1021/acsami.3c14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Security printing is of the utmost importance in the information era. However, the excessive use of inks and paper still faces many economic and environmental issues. Thus, developing erasable inkless security printing materials is a remarkable strategy to save resources, protect the environment, and improve information security. To this endeavor, a photoresponsive lanthanide-polyoxometalate-doped gelatin film with high transparency was developed through the solution casting method. Attenuated total reflection Fourier-transform infrared spectroscopy confirmed the electrostatic and hydrogen bond interactions between gelatin and lanthanide-polyoxometalate. Absorption spectra, luminescent spectra, and digital images indicated that the film displayed reversible photochromism behavior and was accompanied by luminescent switching property upon exposure to UV irradiation and oxygen (in the dark) alternately, which allowed its potential application as a reprintable medium for inkless security printing. The printed information can be erased upon exposure to oxygen in the dark, and the film can be reused for printing again. The film exhibited excellent erasability, reprintability, renewability, and low toxicity. In addition, multiple encryption strategies were designed to improve information security. This work offers an attractive alternative strategy for constructing a reprintable film for inkless security printing in terms of simplifying the preparation process, saving resources, and protecting the environment.
Collapse
Affiliation(s)
- Ning Peng
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jingfang Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yumei Hua
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Sicong Zhao
- Key Laboratory of Advanced Manufacturing and Intelligent Technology (MOE), School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
2
|
Gao M, Li J, Peng N, Jiang L, Zhao S, Fu DY, Li G. Multi-stimuli responsive lanthanides-based luminescent hydrogels for advanced information encryption. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Xie X, Zheng T, Li W. Recent Progress in Ionic Coassembly of Cationic Peptides and Anionic Species. Macromol Rapid Commun 2020; 41:e2000534. [PMID: 33225490 DOI: 10.1002/marc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/10/2020] [Indexed: 12/25/2022]
Abstract
Peptide assembly has been extensively exploited as a promising platform for the creation of hierarchical nanostructures and tailor-made bioactive materials. Ionic coassembly of cationic peptides and anionic species is paving the way to provide particularly important contribution to this topic. In this review, the recent progress of ionic coassembly soft materials derived from the electrostatic coupling between cationic peptides and anionic species in aqueous solution is systematically summarized. The presentation of this review starts from a brief background on the general importance and advantages of peptide-based ionic coassembly. After that, diverse combinations of cationic peptides with small anions, macro- and/or oligo-anions, anionic polymers, and inorganic polyoxometalates are described. Emphasis is placed on the hierarchical structures, value-added properties, and applications. The molecular design of cationic peptides and the general principles behind the ionic coassembled structures are discussed. It is summarized that the combination of interesting and unique characteristics that arise both from the chemical diversity of peptides and the wide range of anionic species may contribute in a variety of output, including drug delivery, tissue engineering, gene transfection, and antibacterial activity. The emergent new phenomena and findings are illustrated. Finally, the outlook for the peptide-based ionic coassembly systems is also presented.
Collapse
Affiliation(s)
- Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China.,Department of Chemistry, Xinzhou Teachers' University, Xinzhou, Shanxi, 034000, China
| | - Tingting Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| |
Collapse
|
4
|
Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. SOFT MATTER 2020; 16:1404-1454. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this review, we focus on the very recent developments on the use of the stimuli responsive properties of polymer hydrogels for targeted drug delivery, tissue engineering, and biosensing utilizing their different optoelectronic properties. Besides, the stimuli-responsive hydrogels, the conducting polymer hydrogels are discussed, with specific attention to the energy generation and storage behavior of the xerogel derived from the hydrogel. The electronic and ionic conducting gels have been discussed that have applications in various electronic devices, e.g., organic field effect transistors, soft robotics, ionic skins, and sensors. The properties of polymer hybrid gels containing carbon nanomaterials have been exemplified here giving attention to applications in supercapacitors, dye sensitized solar cells, photocurrent switching, etc. Recent trends in the properties and applications of some natural polymer gels to produce thermal and acoustic insulating materials, drug delivery vehicles, self-healing material, tissue engineering, etc., are discussed. Besides the polymer gels, peptide gels of different dipeptides, tripeptides, oligopeptides, polypeptides, cyclic peptides, etc., are discussed, giving attention mainly to biosensing, bioimaging, and drug delivery applications. The properties of peptide-based hybrid hydrogels with polymers, nanoparticles, nucleotides, fullerene, etc., are discussed, giving specific attention to drug delivery, cell culture, bio-sensing, and bioimaging properties. Thus, the present review delineates, in short, the preparation, properties, and applications of different polymer and peptide hydrogels prepared in the past few years.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
5
|
Ilbeygi H, Kim IY, Kim MG, Cha W, Kumar PSM, Park D, Vinu A. Highly Crystalline Mesoporous Phosphotungstic Acid: A High‐Performance Electrode Material for Energy‐Storage Applications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hamid Ilbeygi
- Future Industries Institute (FII) University of South Australia Mawson Lakes SA 5095 Australia
| | - In Young Kim
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment The University of Newcastle Callaghan NSW 2308 Australia
| | - Min Gyu Kim
- Pohang Accelerator Laboratory Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Wangsoo Cha
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment The University of Newcastle Callaghan NSW 2308 Australia
| | | | - Dae‐Hwan Park
- Department of Nano Materials Science and Engineering Kyungnam University Gyeongsangnamdo 51767 Republic of Korea
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment The University of Newcastle Callaghan NSW 2308 Australia
| |
Collapse
|
6
|
Ilbeygi H, Kim IY, Kim MG, Cha W, Kumar PSM, Park D, Vinu A. Highly Crystalline Mesoporous Phosphotungstic Acid: A High‐Performance Electrode Material for Energy‐Storage Applications. Angew Chem Int Ed Engl 2019; 58:10849-10854. [DOI: 10.1002/anie.201901224] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Hamid Ilbeygi
- Future Industries Institute (FII) University of South Australia Mawson Lakes SA 5095 Australia
| | - In Young Kim
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment The University of Newcastle Callaghan NSW 2308 Australia
| | - Min Gyu Kim
- Pohang Accelerator Laboratory Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Wangsoo Cha
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment The University of Newcastle Callaghan NSW 2308 Australia
| | | | - Dae‐Hwan Park
- Department of Nano Materials Science and Engineering Kyungnam University Gyeongsangnamdo 51767 Republic of Korea
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment The University of Newcastle Callaghan NSW 2308 Australia
| |
Collapse
|
7
|
Li X, Zheng T, Liu X, Du Z, Xie X, Li B, Wu L, Li W. Coassembly of Short Peptide and Polyoxometalate into Complex Coacervate Adapted for pH and Metal Ion-Triggered Underwater Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4995-5003. [PMID: 30892902 DOI: 10.1021/acs.langmuir.9b00273] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fabrication of peptide assemblies to mimic the functions of natural proteins represents an intriguing aim in the fields of soft materials. Herein, we present a kind of novel peptide-based adhesive coacervate for the exploration of the environment-responsive underwater adhesion. Adhesive coacervates are designed and synthesized by self-assembled condensation of a tripeptide and polyoxometalates in aqueous solution. Rheological measurements demonstrate that the adhesive coacervates exhibit shear thinning behavior, which allows them to be conveniently delivered for interfacial spreading through a narrow gauge syringe without high pressure. The complex coacervates are susceptible to pH and metal ions, resulting in the occurrence of a phase transition from the fluid phase to the gel state. Scanning electron microscopy demonstrates that the microscale structures of the gel-like phases are composed of interconnected three-dimensional porous networks. The rheological study reveals that the gel-like assemblies exhibited mechanical stiffness and self-healing properties. Interestingly, the gel-like samples show the capacity to adhere to various wet solid substrates under the waterline. The adhesion strength of the peptide-based gel is quantified by lap shear mechanical analysis. The fluid coacervate is further exploited in the preparation of "on-site" injectable underwater adhesives triggered by environmental factors. This finding is exciting and serves to expand our capability for the fabrication of peptide-based underwater adhesives in a controllable way.
Collapse
Affiliation(s)
- Xiangyi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Tingting Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Zhanglei Du
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| |
Collapse
|
8
|
Sun N, Wu A, Yu Y, Gao X, Zheng L. Polyoxometalate‐Based Photochromic Supramolecular Hydrogels with Highly Ordered Spherical and Cylindrical Micellar Nanostructures. Chemistry 2019; 25:6203-6211. [DOI: 10.1002/chem.201900478] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/01/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Na Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of EducationShandong University Jinan 250100 P.R. China
| | - Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of EducationShandong University Jinan 250100 P.R. China
| | - Yang Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of EducationShandong University Jinan 250100 P.R. China
| | - Xinpei Gao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of EducationShandong University Jinan 250100 P.R. China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of EducationShandong University Jinan 250100 P.R. China
| |
Collapse
|
9
|
Rodikova YA, Zhizhina EG, Pai ZP. Multicycle Testing of P-Mo-V Heteropoly Acid Catalysts in Oxidation of Substituted Phenols. ChemistrySelect 2018. [DOI: 10.1002/slct.201800360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yulia A. Rodikova
- Department of Fine Organic Synthesis and Renewable Energy Sources; Boreskov Institute of Catalysis SB RAS; pr. Akad. Lavrentieva 5 630090 Novosibirsk Russian Federation
| | - Elena G. Zhizhina
- Department of Fine Organic Synthesis and Renewable Energy Sources; Boreskov Institute of Catalysis SB RAS; pr. Akad. Lavrentieva 5 630090 Novosibirsk Russian Federation
| | - Zinaida P. Pai
- Department of Fine Organic Synthesis and Renewable Energy Sources; Boreskov Institute of Catalysis SB RAS; pr. Akad. Lavrentieva 5 630090 Novosibirsk Russian Federation
| |
Collapse
|
10
|
Xu J, Li X, Li X, Li B, Wu L, Li W, Xie X, Xue R. Supramolecular Copolymerization of Short Peptides and Polyoxometalates: toward the Fabrication of Underwater Adhesives. Biomacromolecules 2017; 18:3524-3530. [DOI: 10.1021/acs.biomac.7b00817] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Xu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Xiangyi Li
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Xiaodong Li
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Bao Li
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Lixin Wu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Wen Li
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Xiaoming Xie
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Rong Xue
- National
Analytical Research Center of Electrochemistry and Spectroscopy, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
11
|
You S, Zhong K, Jin LY. Control of supramolecular nanoassemblies by tuning the interactions of bent-shaped rod-coil molecules. SOFT MATTER 2017; 13:3334-3340. [PMID: 28421215 DOI: 10.1039/c7sm00615b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rod-coil molecules 1a, 1b and 2a, 2b, consisting of biphenyl and phenyl units connected by an acetylene bond as the rod segment and oligo(ethylene glycol) (OEG) as the coil segment, were synthesized and characterized. Molecules 1a and 1b incorporate a butoxy group at the apex of their bent-shaped rigid building blocks, while both 1b and 2b contain a lateral methyl group between the rod and coil segments. The self-assembling behavior of these molecules was investigated using DSC, SAXS, CD, AFM, and TEM in bulk and aqueous solutions. In the bulk state, 1a self-assembles into oblique columnar structures, whereas 1b, incorporating butoxy and lateral methyl groups, self-assembles into three-dimensional body-centered tetragonal structures. Molecules 2a and 2b with no butoxy groups, and 2b incorporating a lateral methyl group, self-assemble into hexagonal perforated lamellar and oblique columnar structures, respectively. In dilute aqueous solutions, 1a assembles into tubular nanoassemblies, while 1b self-organizes into micelles and nanoparticles. On the other hand, 2a and 2b spontaneously aggregate into nanoribbons and nanofibers. Furthermore, CD experiments together with AFM investigations of 2b indicate the creation of self-organized helical fibers, implying that the lateral methyl group induces the helical stacking of the rod building block. These results reveal that the butoxy and lateral methyl groups between the rod and coil segments dramatically influence the creation of supramolecular nanostructures and morphologies.
Collapse
Affiliation(s)
- Shengnan You
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University, Yanji 133002, China.
| | | | | |
Collapse
|