1
|
Cruz-Maya I, Zuppolini S, Zarrelli M, Mazzotta E, Borriello A, Malitesta C, Guarino V. Polydopamine-Coated Alginate Microgels: Process Optimization and In Vitro Validation. J Funct Biomater 2022; 14:jfb14010002. [PMID: 36662049 PMCID: PMC9865381 DOI: 10.3390/jfb14010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In the last decade, alginate-based microgels have gained relevant interest as three-dimensional analogues of extracellular matrix, being able to support cell growth and functions. In this study, core-shell microgels were fabricated by self-polymerization of dopamine (DA) molecules under mild oxidation and in situ precipitation of polydopamine (PDA) onto alginate microbeads, processed by electro fluid dynamic atomization. Morphological (optical, SEM) and chemical analyses (ATR-FTIR, XPS) confirmed the presence of PDA macromolecules, distributed onto the microgel surface. Nanoindentation tests also indicated that the PDA coating can influence the biomechanical properties of the microgel surfaces-i.e., σmaxALG = 0.45 mN vs. σmaxALG@PDA = 0.30 mN-thus improving the interface with hMSCs as confirmed by in vitro tests; in particular, protein adsorption and viability tests show a significant increase in adhesion and cell proliferation, strictly related to the presence of PDA. Hence, we concluded that PDA coating contributes to the formation of a friendly interface able to efficiently support cells' activities. In this perspective, core-shell microgels may be suggested as a novel symmetric 3D model to study in vitro cell interactions.
Collapse
Affiliation(s)
- Iriczalli Cruz-Maya
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Simona Zuppolini
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Mauro Zarrelli
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Anna Borriello
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, V.le J.F. Kennedy 54, 80125 Naples, Italy
- Correspondence: (A.B.); (V.G.)
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, V.le J.F. Kennedy 54, 80125 Naples, Italy
- Correspondence: (A.B.); (V.G.)
| |
Collapse
|
2
|
Joshi J, Homburg SV, Ehrmann A. Atomic Force Microscopy (AFM) on Biopolymers and Hydrogels for Biotechnological Applications-Possibilities and Limits. Polymers (Basel) 2022; 14:1267. [PMID: 35335597 PMCID: PMC8949482 DOI: 10.3390/polym14061267] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Atomic force microscopy (AFM) is one of the microscopic techniques with the highest lateral resolution. It can usually be applied in air or even in liquids, enabling the investigation of a broader range of samples than scanning electron microscopy (SEM), which is mostly performed in vacuum. Since it works by following the sample surface based on the force between the scanning tip and the sample, interactions have to be taken into account, making the AFM of irregular samples complicated, but on the other hand it allows measurements of more physical parameters than pure topography. This is especially important for biopolymers and hydrogels used in tissue engineering and other biotechnological applications, where elastic properties, surface charges and other parameters influence mammalian cell adhesion and growth as well as many other effects. This review gives an overview of AFM modes relevant for the investigations of biopolymers and hydrogels and shows several examples of recent applications, focusing on the polysaccharides chitosan, alginate, carrageenan and different hydrogels, but depicting also a broader spectrum of materials on which different AFM measurements are reported in the literature.
Collapse
Affiliation(s)
- Jnanada Joshi
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Sarah Vanessa Homburg
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
3
|
Ochbaum G, Chetrit E, Berkovich R, Bitton R. Effect of the C-terminal amino acid of the peptide on the structure and mechanical properties of alginate-peptide hydrogels across length-scales. SOFT MATTER 2020; 16:6155-6162. [PMID: 32555880 DOI: 10.1039/d0sm00329h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Alginate is a natural anionic polysaccharide that exhibits excellent biocompatibility and biodegradability. Alginate hydrogels have many different applications in the field of regenerative medicine especially when peptides are conjugated to the alginate backbone. Here, we systematically investigate the effect of six arginine-glycine-aspartic acid (RGD)-containing peptides, G6KRGDY/S, A6KRGDY/S and V6KRGDY/S, on the macroscopic and microscopic physical properties and spatial organization of alginate-peptides hydrogels. Using rheology, small angle X-ray scattering and nanoindentation measurements we show a strong correlation between the macroscopic-bulk properties and the microscopic-local properties of the alginate-peptide hydrogels. Furthermore, our results indicate that the identity of the amino acid at the C-terminal of the peptide plays a major role in determining the structure and mechanical properties of the hydrogel across length-scales, where the presence of tyrosine (Y) terminated peptides introduce more junction-zones and consequently larger stiffness than those terminated with serine (S).
Collapse
Affiliation(s)
- Guy Ochbaum
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| | - Einat Chetrit
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| | - Ronen Berkovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. and Ilze Kats Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. and Ilze Kats Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
4
|
Ghnatios C, Alfaro I, González D, Chinesta F, Cueto E. Data-Driven GENERIC Modeling of Poroviscoelastic Materials
. ENTROPY 2019. [PMCID: PMC7514510 DOI: 10.3390/e21121165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biphasic soft materials are challenging to model by nature. Ongoing efforts are targeting their effective modeling and simulation. This work uses experimental atomic force nanoindentation of thick hydrogels to identify the indentation forces are a function of the indentation depth. Later on, the atomic force microscopy results are used in a GENERIC general equation for non-equilibrium reversible–irreversible coupling (GENERIC) formalism to identify the best model conserving basic thermodynamic laws. The data-driven GENERIC analysis identifies the material behavior with high fidelity for both data fitting and prediction.
Collapse
Affiliation(s)
- Chady Ghnatios
- Mechanical Engineering Department, Notre Dame University-Louaizé, Zouk Mosbeh P.O. Box 72, Lebanon
- Correspondence: ; Tel.: +961-3-179672
| | - Iciar Alfaro
- Aragon Institute of Engineering Research, Universidad de Zaragoza, Edificio Betancourt, Maria de Luna, s.n., 50018 Zaragoza, Spain; (I.A.); (E.C.)
| | - David González
- Aragon Institute of Engineering Research, Universidad de Zaragoza, Edificio Betancourt, Maria de Luna, s.n., 50018 Zaragoza, Spain; (I.A.); (E.C.)
| | - Francisco Chinesta
- ESI Chair @ ENSAM Arts et Metiers Institute of Technology, 151 Boulevard de l’Hôpital, F-75013 Paris, France;
| | - Elias Cueto
- Aragon Institute of Engineering Research, Universidad de Zaragoza, Edificio Betancourt, Maria de Luna, s.n., 50018 Zaragoza, Spain; (I.A.); (E.C.)
| |
Collapse
|
5
|
Mathis CH, Simič R, Kang C, Ramakrishna SN, Isa L, Spencer ND. Indenting polymer brushes of varying grafting density in a viscous fluid: A gradient approach to understanding fluid confinement. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Bu Y, Xu HX, Li X, Xu WJ, Yin YX, Dai HL, Wang XB, Huang ZJ, Xu PH. A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration. RSC Adv 2018; 8:10806-10817. [PMID: 35541536 PMCID: PMC9078905 DOI: 10.1039/c8ra01059e] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d-glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO3), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10−5 to 8.03 × 10−3 S cm−1. The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering. Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties.![]()
Collapse
Affiliation(s)
- Ying Bu
- Department of Pharmaceutical Engineering
- School of Chemistry, Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Hai-Xing Xu
- Department of Pharmaceutical Engineering
- School of Chemistry, Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Xin Li
- Department of Pharmaceutical Engineering
- School of Chemistry, Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Wen-Jin Xu
- Department of Pharmaceutical Engineering
- School of Chemistry, Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Yi-xia Yin
- Biomedical Materials and Engineering Research Center
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Hong-lian Dai
- Biomedical Materials and Engineering Research Center
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Xiao-bin Wang
- Wuhan Kanghua Century Pharmaceutical Company
- Wuhan 430070
- PR China
| | - Zhi-Jun Huang
- Department of Pharmaceutical Engineering
- School of Chemistry, Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Pei-Hu Xu
- Department of Pharmaceutical Engineering
- School of Chemistry, Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- PR China
| |
Collapse
|
7
|
Ghnatios C, Mathis CH, Simic R, Spencer ND, Chinesta F. Modeling soft, permeable matter with the proper generalized decomposition (PGD) approach, and verification by means of nanoindentation. SOFT MATTER 2017; 13:4482-4493. [PMID: 28580485 DOI: 10.1039/c7sm00246g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding sliding and load-bearing mechanisms of biphasic soft matter is crucial for designing synthetic replacements of cartilage, contact-lens materials or coatings for medical instruments. Interstitial fluid pressurization is believed to be the intrinsic load-carrying phenomenon governing the frictional properties. In this study, we have characterized permeability and identified the fluid contribution to the support of load during Atomic Force Microscopy (AFM) nanoindentation of soft polymer brushes in aqueous environments, by means of the Proper Generalized Decomposition (PGD) approach. First, rate-dependent AFM nanoindentation was performed on a poly(acrylamide) (PAAm) brush in an aqueous environment, to probe the purely elastic as well as poro-viscoelastic properties. Second, a biphasic model decoupling the fluid and solid load contributions was proposed, using Darcy's equation for liquid flow in porous media. Using realistic time-dependent simulations requires many direct solutions of the 3D partial differential equation, making modeling very time-consuming. To efficiently alleviate the time-consumption of multi-dimensional modeling, we used PGD to solve a Darcy model defined in a 7D domain, considering all the unknowns and material properties as extra coordinates of the problem. The obtained 7D simulation results were compared to the experimental results by using a direct Newton algorithm, since all sensitivities with respect to the model parameters are readily available. Thus, a simulation-based solution for depth- and rate-dependent permeability can be obtained. From the PGD-based model permeability is calculated, and the velocity- and pressure-fields in the material can be obtained in real-time in 3D by adjusting the parameters to the experimental values. The result is a step forward in understanding the fluid flow, permeability and fluid contributions to the load support of biphasic soft matter.
Collapse
Affiliation(s)
- Chady Ghnatios
- Norte Dame University-Louaize, Mechanical Engineering Department, Zouk Mosbeh, Lebanon.
| | | | | | | | | |
Collapse
|
8
|
Han B, Ma T, Vergara JH, Palmese GR, Yin J, Lee D, Han L. Non-additive impacts of covalent cross-linking on the viscoelastic nanomechanics of ionic polyelectrolyte complexes. RSC Adv 2017. [DOI: 10.1039/c7ra08514a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study elucidates the influences of adding covalent cross-linking on the nanomechanical viscoelasticity of ionically cross-linked polyelectrolyte networks.
Collapse
Affiliation(s)
- Biao Han
- School of Biomedical Engineering, Science, and Health Systems
- Drexel University
- Philadelphia
- USA
| | - Tianzhu Ma
- School of Biomedical Engineering, Science, and Health Systems
- Drexel University
- Philadelphia
- USA
| | - John H. Vergara
- Department of Chemical and Biological Engineering
- Drexel University
- Philadelphia
- USA
| | - Giuseppe R. Palmese
- Department of Chemical and Biological Engineering
- Drexel University
- Philadelphia
- USA
| | - Jie Yin
- Department of Mechanical Engineering
- Temple University
- Philadelphia
- USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering
- University of Pennsylvania
- Philadelphia
- USA
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems
- Drexel University
- Philadelphia
- USA
| |
Collapse
|