1
|
Bezrukov A, Galeeva A, Krupin A, Galyametdinov Y. Molecular Orientation Behavior of Lyotropic Liquid Crystal-Carbon Dot Hybrids in Microfluidic Confinement. Int J Mol Sci 2024; 25:5520. [PMID: 38791556 PMCID: PMC11122583 DOI: 10.3390/ijms25105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Lyotropic liquid crystals represent an important class of anisotropic colloid systems. Their integration with optically active nanoparticles can provide us with responsive luminescent media that offer new fundamental and applied solutions for biomedicine. This paper analyzes the molecular-level behavior of such composites represented by tetraethylene glycol monododecyl ether and nanoscale carbon dots in microfluidic channels. Microfluidic confinement allows for simultaneously applying multiple factors, such as flow dynamics, wall effects, and temperature, for the precise control of the molecular arrangement in such composites and their resulting optical properties. The microfluidic behavior of composites was characterized by a set of analytical and modeling tools such as polarized and fluorescent microscopy, dynamic light scattering, and fluorescent spectroscopy, as well as image processing in Matlab. The composites were shown to form tunable anisotropic intermolecular structures in microchannels with several levels of molecular ordering. A predominant lamellar structure of the composites was found to undergo additional ordering with respect to the microchannel axis and walls. Such an alignment was controlled by applying shear and temperature factors to the microfluidic environment. The revealed molecular behavior of the composite may contribute to the synthesis of hybrid organized media capable of polarized luminescence for on-chip diagnostics and biomimetics.
Collapse
Affiliation(s)
- Artem Bezrukov
- Department of Physical and Colloid Chemistry, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia; (A.G.); (A.K.); (Y.G.)
| | | | | | | |
Collapse
|
2
|
Lesniewska M, Mottram N, Henrich O. Defect-influenced particle advection in highly confined liquid crystal flows. SOFT MATTER 2024; 20:2218-2231. [PMID: 38227288 DOI: 10.1039/d3sm01297b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
We study the morphology of the Saturn ring defect and director structure around a colloidal particle with normal anchoring conditions and within the flow of the nematic host phase through a rectangular duct of comparable size to the particle. The changes in the defect structures and director profile influence the advection behaviour of the particle, which we compare to that in a simple Newtonian host phase. These effects lead to a non-monotonous dependence of the differential velocity of particle and fluid, also known as retardation ratio, on the Ericksen number.
Collapse
Affiliation(s)
| | - Nigel Mottram
- School of Mathematics & Statistics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Oliver Henrich
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK.
| |
Collapse
|
3
|
Bagchi K, Emeršič T, Martínez-González JA, de Pablo JJ, Nealey PF. Functional soft materials from blue phase liquid crystals. SCIENCE ADVANCES 2023; 9:eadh9393. [PMID: 37494446 PMCID: PMC10371026 DOI: 10.1126/sciadv.adh9393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Blue phase (BP) liquid crystals are chiral fluids wherein millions of molecules self-assemble into cubic lattices that are on the order of hundred nanometers. As the unit cell sizes of BPs are comparable to the wavelength of light, they exhibit selective Bragg reflections in the visible. The exploitation of the photonic properties of BPs for technological applications is made possible through photopolymerization, a process that renders mechanical robustness and thermal stability. We review here the preparation and characterization of stimuli-responsive, polymeric photonic crystals based on BPs. We highlight recent studies that demonstrate the promise that polymerized BP photonic crystals hold for colorimetric sensing and dynamic light control. We review using Landau-de Gennes simulations for predicting the self-assembly of BPs and the potential for using theory to guide experimental design. Finally, opportunities for using BPs to synthesize new soft materials, such as highly structured polymer meshes, are discussed.
Collapse
Affiliation(s)
- Kushal Bagchi
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Tadej Emeršič
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - José A Martínez-González
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí 78210 SLP, Mexico
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Paul F Nealey
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
4
|
Abbasi Moud A, Abbasi Moud A. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. Int J Biol Macromol 2023; 232:123391. [PMID: 36716841 DOI: 10.1016/j.ijbiomac.2023.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Cellulosic sources, such as lignocellulose-rich biomass, can be mechanically or acid degraded to produce inclusions called cellulose nanocrystals (CNCs). They have several uses in the sectors of biomedicine, photonics, and material engineering because of their biodegradability, renewability, sustainability, and mechanical qualities. The processing and design of CNC-based products are inextricably linked to the rheological behaviour of CNC suspension or in combination with other chemicals, such as surfactants or polymers; in this context, rheology offers a significant link between microstructure and macro scale flow behaviour that is intricately linked to material response in applications. The flow behaviour of CNC items must be properly specified in order to produce goods with value-added characteristics. In this review article, we provide new research on the shear rheology of CNC dispersion and CNC-based hydrogels in the linear and nonlinear regime, with storage modulus values reported to range from ~10-3 to 103 Pa. Applications in technology and material science are also covered simultaneously. We carefully examined the effects of charge density, aspect ratio, concentration, persistence length, alignment, liquid crystal formation, the cause of chirality in CNCs, interfacial behaviour and interfacial rheology, linear and nonlinear viscoelasticity of CNC suspension in bulk and at the interface using the currently available literature.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran.
| | - Aliyeh Abbasi Moud
- Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran
| |
Collapse
|
5
|
Bezrukov AN, Osipova VV, Galyametdinov YG. Orientational behavior of a nematic liquid crystal and its composite with quantum dots in a microfluidic channel. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Esmaeili M, George K, Rezvan G, Taheri-Qazvini N, Zhang R, Sadati M. Capillary Flow Characterizations of Chiral Nematic Cellulose Nanocrystal Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2192-2204. [PMID: 35133841 DOI: 10.1021/acs.langmuir.1c01881] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Studying the flow-induced alignment of anisotropic liquid crystalline materials is of major importance in the 3D printing of advanced architectures. However, in situ characterization and quantitative measurements of local orientations during the 3D printing process are challenging. Here, we report a microfluidic strategy integrated with polarized optical microscopy (POM) to perform the in situ characterization of the alignment of cellulose nanocrystals (CNCs) under the shear-flow condition of the 3D printer's nozzle in the direct ink writing process. To quantify the alignment, we exploited birefringence measurements under white and monochromatic light. We show that the flow-induced birefringence patterns are significantly influenced by the initial structure of the aqueous CNC suspensions. Depending on the CNC concentration and sonication treatment, various structures can form in the CNC suspensions, such as isotropic, chiral nematic (cholesteric), and nematic (gel-like) structures. In the chiral nematic phase, in particular, the shear flow in the microfluidic capillary has a distinct effect on the alignment of the CNC particles. Our experimental results, complemented by hydrodynamic simulations, reveal that at high flow rates (Er ≈ 1000), individual CNC particles align with the flow exhibiting a weak chiral structure. In contrast, at lower flow rates (Er ≈ 241), they display the double-twisted cylinder structure. Understanding the flow effect on the alignment of the chiral liquid crystal can pave the way to designing 3D printed architectures with internal chirality for advanced mechanical and smart photonic applications.
Collapse
Affiliation(s)
- Mohsen Esmaeili
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Kyle George
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gelareh Rezvan
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
7
|
Eichler JC, Skutnik RA, Mazza MG, Schoen M. Flow-assisted self-healing of the helical structure in a cholesteric liquid crystal. J Chem Phys 2021; 155:054903. [PMID: 34364338 DOI: 10.1063/5.0058745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We employ nonequilibrium molecular dynamics simulations to investigate the structure and dynamics of a cholesteric liquid crystal confined between atomically corrugated solid walls. By choosing walls normal to the helical axis, we can study systems with an arbitrary cholesteric pitch without exposing the cholesteric helix to a spurious stress. We investigate the effects of local heating and flow and their joint effects. A steady-state laminar Poiseuille flow is initiated by means of an external body force. Flow alone (i.e., without local heating) in a direction normal to the helical axis does not affect the cholesteric pitch. If the liquid crystal is heated in a small region, the cholesteric helix becomes unstable and melts locally. However, if local heating and flow are combined, a nontrivial synergistic effect is observed in that the helical structure recuperates the better, the higher the speed of the flow is.
Collapse
Affiliation(s)
- Jan-Christoph Eichler
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Robert A Skutnik
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Marco G Mazza
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, University Road, Loughborough LE11 3TU, United Kingdom
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
8
|
Sengupta A. Novel optofluidic concepts enabled by topological microfluidics-INVITED. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202125510002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The coupling between flow and director orientation of liquid crystals (LCs) has been long utilized to devise wide-ranging applications spanning modern displays, medical and environmental solutions, and bio-inspired designs and applications. LC-based optofluidic platforms offer a non-invasive handle to modulate light and material fields, both locally and dynamically. The flow-driven reorientation of the LC molecules can tailor distinct optical and mechanical responses in microfluidic confinements, and harness the coupling therein. Yet the synergy between traditional optofluidics with isotropic fluids and LC microfluidics remains at its infancy. Here, we discuss emerging optofluidic concepts based on Topological Microfluidics, leveraging microfluidic control of topological defects and defect landscapes. With a specific focus on the role of surface anchoring and microfluidic geometry, we present recent and ongoing works that harness flow-controlled director and defect configurations to modulate optical fields. The flow-induced optical attributes, and the corresponding feedback, is enhanced in the vicinity of the topological defects which geenerate distinct isotropic opto-material properties within an anisotropic matrix. By harnessing the rich interplay of confining geometry, anchoring and micro-scale nematodynamics, topological microfluidics offers a promising platform to ideate the next generation of optofluidic and optomechnical concepts.
Collapse
|
9
|
Abstract
Nematic and columnar phases of lyotropic chromonic liquid crystals (LCLCs) have been long studied for their fundamental and applied prospects in material science and medical diagnostics. LCLC phases represent different self-assembled states of disc-shaped molecules, held together by noncovalent interactions that lead to highly sensitive concentration and temperature dependent properties. Yet, microscale insights into confined LCLCs, specifically in the context of confinement geometry and surface properties, are lacking. Here, we report the emergence of time dependent textures in static disodium cromoglycate (DSCG) solutions, confined in PDMS-based microfluidic devices. We use a combination of soft lithography, surface characterization, and polarized optical imaging to generate and analyze the confinement-induced LCLC textures and demonstrate that over time, herringbone and spherulite textures emerge due to spontaneous nematic (N) to columnar M-phase transition, propagating from the LCLC-PDMS interface into the LCLC bulk. By varying the confinement geometry, anchoring conditions, and the initial DSCG concentration, we can systematically tune the temporal dynamics of the N- to M-phase transition and textural behavior of the confined LCLC. Overall, the time taken to change from nematic to the characteristic M-phase textures decreased as the confinement aspect ratio (width/depth) increased. For a given aspect ratio, the transition to the M-phase was generally faster in degenerate planar confinements, relative to the transition in homeotropic confinements. Since the static molecular states register the initial conditions for LC flows, the time dependent textures reported here suggest that the surface and confinement effects—even under static conditions—could be central in understanding the flow behavior of LCLCs and the associated transport properties of this versatile material.
Collapse
|
10
|
Čopar S, Kos Ž, Emeršič T, Tkalec U. Microfluidic control over topological states in channel-confined nematic flows. Nat Commun 2020; 11:59. [PMID: 31896755 PMCID: PMC6940393 DOI: 10.1038/s41467-019-13789-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/28/2019] [Indexed: 12/02/2022] Open
Abstract
Compared to isotropic liquids, orientational order of nematic liquid crystals makes their rheological properties more involved, and thus requires fine control of the flow parameters to govern the orientational patterns. In microfluidic channels with perpendicular surface alignment, nematics discontinuously transition from perpendicular structure at low flow rates to flow-aligned structure at high flow rates. Here we show how precise tuning of the driving pressure can be used to stabilize and manipulate a previously unresearched topologically protected chiral intermediate state which arises before the homeotropic to flow-aligned transition. We characterize the mechanisms underlying the transition and construct a phenomenological model to describe the critical behaviour and the phase diagram of the observed chiral flow state, and evaluate the effect of a forced symmetry breaking by introduction of a chiral dopant. Finally, we induce transitions on demand through channel geometry, application of laser tweezers, and careful control of the flow rate. It is interesting phenomenon that chiral order can emerge in intrinsically achiral liquid crystals. Here Čopar et al. demonstrate achiral-to-chiral transition of the nematic liquid crystals flow in microfluidic channels and their behaviour, stability, and dependence on geometric and material parameters.
Collapse
Affiliation(s)
- Simon Čopar
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia
| | - Žiga Kos
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia
| | - Tadej Emeršič
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.,Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Uroš Tkalec
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia. .,Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia. .,Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, 2000, Maribor, Slovenia.
| |
Collapse
|