1
|
Nambiar N, Loyd ZA, Abel SM. Particle Deformability Enables Control of Interactions between Membrane-Anchored Nanoparticles. J Chem Theory Comput 2024; 20:1732-1739. [PMID: 37844420 DOI: 10.1021/acs.jctc.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Nanoparticles adsorbed on a membrane can induce deformations of the membrane that give rise to effective interactions between the particles. Previous studies have focused primarily on rigid nanoparticles with fixed shapes. However, DNA origami technology has enabled the creation of deformable nanostructures with controllable shapes and mechanical properties, presenting new opportunities to modulate interactions between particles adsorbed on deformable surfaces. Here we use coarse-grained molecular dynamics simulations to investigate deformable, hinge-like nanostructures anchored to lipid membranes via cholesterol anchors. We characterize deformations of the particles and membrane as a function of the hinge stiffness. Flexible particles adopt open configurations to conform to a flat membrane, whereas stiffer particles induce deformations of the membrane. We further show that particles spontaneously aggregate and that cooperative effects lead to changes in their shape when they are close together. Using umbrella sampling methods, we quantify the effective interaction between two particles and show that stiffer hinge-like particles experience stronger and longer-ranged attraction. Our results demonstrate that interactions between deformable, membrane-anchored nanoparticles can be controlled by modifying mechanical properties of the particles, suggesting new ways to modulate the self-assembly of particles on deformable surfaces.
Collapse
Affiliation(s)
- Nikhil Nambiar
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zachary A Loyd
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
2
|
Li B, Abel SM. Membrane-mediated interactions between hinge-like particles. SOFT MATTER 2022; 18:2742-2749. [PMID: 35311882 DOI: 10.1039/d2sm00094f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adsorption of nanoparticles on a membrane can give rise to interactions between particles, mediated by membrane deformations, that play an important role in self-assembly and membrane remodeling. Previous theoretical and experimental research has focused on nanoparticles with fixed shapes, such as spherical, rod-like, and curved nanoparticles. Recently, hinge-like DNA origami nanostructures have been designed with tunable mechanical properties. Inspired by this, we investigate the equilibrium properties of hinge-like particles adsorbed on an elastic membrane using Monte Carlo and umbrella sampling simulations. The configurations of an isolated particle are influenced by competition between bending energies of the membrane and the particle, which can be controlled by changing adsorption strength and hinge stiffness. When two adsorbed particles interact, they effectively repel one another when the strength of adhesion to the membrane is weak. However, a strong adhesive interaction induces an effective attraction between the particles, which drives their aggregation. The configurations of the aggregate can be tuned by adjusting the hinge stiffness: tip-to-tip aggregation occurs for flexible hinges, whereas tip-to-middle aggregation also occurs for stiffer hinges. Our results highlight the potential for using the mechanical features of deformable nanoparticles to influence their self-assembly when the particles and membrane mutually influence one another.
Collapse
Affiliation(s)
- Bing Li
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, 37996, USA.
| |
Collapse
|
3
|
Kumar P, Theeyancheri L, Chakrabarti R. Chemically symmetric and asymmetric self-driven rigid dumbbells in a 2D polymer gel. SOFT MATTER 2022; 18:2663-2671. [PMID: 35311848 DOI: 10.1039/d1sm01820e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ computer simulations to unveil the translational and rotational dynamics of self-driven chemically symmetric and asymmetric rigid dumbbells in a two-dimensional polymer gel. Our results show that the activity or the self-propulsion always enhances the dynamics of the dumbbells. Making the self-propelled dumbbell chemically asymmetric leads to further enhancement in dynamics. Additionally, the direction of self-propulsion is a key factor for chemically asymmetric dumbbells, where self-propulsion towards the non-sticky half of the dumbbell results in faster translational and rotational dynamics compared to the case with the self-propulsion towards the sticky half of the dumbbell. Our analyses show that both the symmetric and asymmetric passive rigid dumbbells get trapped inside the mesh of the polymer gel, but the chemical asymmetry always facilitates the mesh to mesh motion of the dumbbell and it is even more pronounced when the dumbbell is self-propelled. This results in multiple peaks in the van Hove function with increasing self-propulsion. In a nutshell, we believe that our in silico study can guide researchers to design efficient artificial microswimmers possessing potential applications in site-specific delivery.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ligesh Theeyancheri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
4
|
Klett K, Cherstvy AG, Shin J, Sokolov IM, Metzler R. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions. Phys Rev E 2022; 104:064603. [PMID: 35030844 DOI: 10.1103/physreve.104.064603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022]
Abstract
We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solutions. We study the intradumbbell dynamics of the relative motion of the two constituent elastically coupled disks. Our main focus is on effects of the crowding fraction ϕ and of the particle structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement (TAMSD), the displacement probability-density function (PDF), and the displacement autocorrelation function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells, e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of the diffusivity on ϕ, and the features of the displacement-ACF. We attribute these regimes to a crowding-induced transition from viscous to viscoelastic diffusion upon growing ϕ. We also analyze the relative motion in the dimers, finding that larger ϕ suppress their vibrations and yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(ϕ) of translational and rotational motion of the dumbbells an exponential decay with ϕ for weak and a power-law variation D(ϕ)∝(ϕ-ϕ^{★})^{2.4} for strong crowding is found. A comparison of simulation results with theoretical predictions for D(ϕ) is discussed and some relevant experimental systems are overviewed.
Collapse
Affiliation(s)
- Kolja Klett
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Jaeoh Shin
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
5
|
Roy SM, Garg V, Barman S, Ghosh C, Maity AR, Ghosh SK. Kinetics of Nanomedicine in Tumor Spheroid as an In Vitro Model System for Efficient Tumor-Targeted Drug Delivery With Insights From Mathematical Models. Front Bioeng Biotechnol 2021; 9:785937. [PMID: 34926430 PMCID: PMC8671936 DOI: 10.3389/fbioe.2021.785937] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Numerous strategies have been developed to treat cancer conventionally. Most importantly, chemotherapy shows its huge promise as a better treatment modality over others. Nonetheless, the very complex behavior of the tumor microenvironment frequently impedes successful drug delivery to the tumor sites that further demands very urgent and effective distribution mechanisms of anticancer drugs specifically to the tumor sites. Hence, targeted drug delivery to tumor sites has become a major challenge to the scientific community for cancer therapy by assuring drug effects to selective tumor tissue and overcoming undesired toxic side effects to the normal tissues. The application of nanotechnology to the drug delivery system pays heed to the design of nanomedicine for specific cell distribution. Aiming to limit the use of traditional strategies, the adequacy of drug-loaded nanocarriers (i.e., nanomedicine) proves worthwhile. After systemic blood circulation, a typical nanomedicine follows three levels of disposition to tumor cells in order to exhibit efficient pharmacological effects induced by the drug candidates residing within it. As a result, nanomedicine propounds the assurance towards the improved bioavailability of anticancer drug candidates, increased dose responses, and enhanced targeted efficiency towards delivery and distribution of effective therapeutic concentration, limiting toxic concentration. These aspects emanate the proficiency of drug delivery mechanisms. Understanding the potential tumor targeting barriers and limiting conditions for nanomedicine extravasation, tumor penetration, and final accumulation of the anticancer drug to tumor mass, experiments with in vivo animal models for nanomedicine screening are a key step before it reaches clinical translation. Although the study with animals is undoubtedly valuable, it has many associated ethical issues. Moreover, individual experiments are very expensive and take a longer time to conclude. To overcome these issues, nowadays, multicellular tumor spheroids are considered a promising in vitro model system that proposes better replication of in vivo tumor properties for the future development of new therapeutics. In this review, we will discuss how tumor spheroids could be used as an in vitro model system to screen nanomedicine used in targeted drug delivery, aiming for better therapeutic benefits. In addition, the recent proliferation of mathematical modeling approaches gives profound insight into the underlying physical principles and produces quantitative predictions. The hierarchical tumor structure is already well decorous to be treated mathematically. To study targeted drug delivery, mathematical modeling of tumor architecture, its growth, and the concentration gradient of oxygen are the points of prime focus. Not only are the quantitative models circumscribed to the spheroid, but also the role of modeling for the nanoparticle is equally inevitable. Abundant mathematical models have been set in motion for more elaborative and meticulous designing of nanomedicine, addressing the question regarding the objective of nanoparticle delivery to increase the concentration and the augmentative exposure of the therapeutic drug molecule to the core. Thus, to diffuse the dichotomy among the chemistry involved, biological data, and the underlying physics, the mathematical models play an indispensable role in assisting the experimentalist with further evaluation by providing the admissible quantitative approach that can be validated. This review will provide an overview of the targeted drug delivery mechanism for spheroid, using nanomedicine as an advantageous tool.
Collapse
Affiliation(s)
| | - Vrinda Garg
- Department of Physics, National Institute of Technology, Warangal, India
| | - Sourav Barman
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Chitrita Ghosh
- Department of Pharmacology, Burdwan Medical College and Hospital, Burdwan, India
| | | | - Surya K. Ghosh
- Department of Physics, National Institute of Technology, Warangal, India
| |
Collapse
|
6
|
Zuraw-Weston SE, Siavashpouri M, Moustaka ME, Gerling T, Dietz H, Fraden S, Ribbe AE, Dinsmore AD. Membrane Remodeling by DNA Origami Nanorods: Experiments Exploring the Parameter Space for Vesicle Remodeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6219-6231. [PMID: 33983740 DOI: 10.1021/acs.langmuir.1c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report an experimental study of long, slender nanorods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle concentration, adhesion strength, and membrane tension in determining the membrane morphology. We combined giant unilamellar vesicles with oppositely charged nanorods, carefully tuning the adhesion strength, membrane tension, and particle concentration. With increasing adhesion strength, the primary behaviors observed were membrane deformation, vesicle-vesicle adhesion, and vesicle rupture. These behaviors were observed in well-defined regions in the parameter space with sharp transitions between them. We observed the deformation of the membrane resulting in tubulation, textured surfaces, and small and large lipid-particle aggregates. These responses are robust and repeatable and provide a new physical understanding of the dependence on the shape, binding affinity, and particle concentration in membrane remodeling. The design principles derived from these experiments may lead to new bioinspired membrane-based materials.
Collapse
Affiliation(s)
- Sarah E Zuraw-Weston
- Department of Physics, University of Massachusetts Amherst, Hasbrouck Lab, 666 North Pleasant Street, Amherst, Massachusetts 01002, United States
| | - Mahsa Siavashpouri
- Department of Physics, Brandeis University, Abelson-Bass-Yalem, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Maria E Moustaka
- Department of Physics, Brandeis University, Abelson-Bass-Yalem, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Thomas Gerling
- Department of Physics, Technical University of Munich, James-Franck-Str., 1, Garching D-85748, Germany
| | - Hendrik Dietz
- Department of Physics, Technical University of Munich, James-Franck-Str., 1, Garching D-85748, Germany
| | - Seth Fraden
- Department of Physics, Brandeis University, Abelson-Bass-Yalem, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Alexander E Ribbe
- Department of Polymer Science and Engineering, Silvio O. Conte National Center for Polymer Research, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Anthony D Dinsmore
- Department of Physics, University of Massachusetts Amherst, Hasbrouck Lab, 666 North Pleasant Street, Amherst, Massachusetts 01002, United States
| |
Collapse
|
7
|
Kumari S, Ye F, Podgornik R. Ordering of adsorbed rigid rods mediated by the Boussinesq interaction on a soft substrate. J Chem Phys 2020; 153:144905. [PMID: 33086810 DOI: 10.1063/5.0022556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Orientational ordering driven by mechanical distortion of soft substrates plays a major role in material transformation processes such as elastocapillarity and surface anchoring. We present a theoretical model of the orientational response of anisotropic rods deposited onto a surface of a soft, elastic substrate of finite thickness. We show that anisotropic rods exhibit a continuous isotropic-nematic phase transition, driven by orientational interactions between surface deposited rods. This interaction is mediated by the deformation of the underlying elastic substrate and is quantified by the Boussinesq solution adapted to the case of slender, surface deposited rods. From the microscopic rod-rod interactions, we derive the appropriate Maier-Saupe mean-field description, which includes the Boussinesq elastic free energy contribution due to the substrate elasticity, derive the conditions for the existence of a continuous orientational ordering transition, and discuss the implication of results in the soft (bio)system context.
Collapse
Affiliation(s)
- Sunita Kumari
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Rudolf Podgornik
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Lee J, Wang Z, Zhang J, Yan J, Deng T, Zhao Y, Matyjaszewski K, Bockstaller MR. Molecular Parameters Governing the Elastic Properties of Brush Particle Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jaejun Lee
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jianan Zhang
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tingwei Deng
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Huang B, Tan Z, Bohinc K, Zhang S. Interaction between nanoparticles and charged phospholipid membranes. Phys Chem Chem Phys 2018; 20:29249-29263. [PMID: 30427341 DOI: 10.1039/c8cp04740e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Charged lipids in cell membranes and subcellular organelles are arranged in the form of a bilayer with the hydrocarbon tails sequestered away from the water and the polar head groups exposed to the aqueous environment. Most of them bear net negative charges leading to the negatively charged cell membranes. Charged lipid-lipid and lipid-protein interactions are generally dynamic and heavily depend on their local molecular concentrations. To examine the electrostatic properties of charged lipid layers in contact with an electrolyte solution, we incorporate the single chain mean field theory with Poisson-Boltzmann theory to explore the equilibrium structure of charged phospholipid membranes. Using the three bead coarse-grained model we reproduced the essential equilibrium properties of the charged phospholipid bilayer. We also investigate the influence of the mobile ions on the thickness of the layer, the area per lipid (APL), and the electrostatic potential of the membrane. Then we investigate the attraction-repulsion property of two charged nanoparticles which are stuck on the charged lipid molecules surrounded with mobile ions. After that we simulated the interaction between the Pleckstrin homology domain (PH domain) of Akt and the cytoplasmic membrane. Taking into account the electrostatic interaction, we observe the structure changes of the membrane at different concentrations of mobile ions in its equilibrium state. Also we discuss the influence of mobile ions on the size of the pore opened in the membrane by the charged protein. Such an observation may shed light on the activation of oncogenic Akt (or protein kinase B) around the membrane at the molecular level.
Collapse
Affiliation(s)
- Beibei Huang
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1901 East Road, Houston, TX 77054, USA.
| | | | | | | |
Collapse
|
10
|
Simunovic M, Bassereau P, Voth GA. Organizing membrane-curving proteins: the emerging dynamical picture. Curr Opin Struct Biol 2018; 51:99-105. [PMID: 29609179 PMCID: PMC6165709 DOI: 10.1016/j.sbi.2018.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/30/2022]
Abstract
Lipid membranes play key roles in cells, such as in trafficking, division, infection, remodeling of organelles, among others. The key step in all these processes is creating membrane curvature, typically under the control of many anchored, adhered or included proteins. However, it has become clear that the membrane itself can mediate the interactions among proteins to produce highly ordered assemblies. Computer simulations are ideally suited to investigate protein organization and the dynamics of membrane remodeling at near-micron scales, something that is extremely challenging to tackle experimentally. We review recent computational efforts in modeling protein-caused membrane deformation mechanisms, specifically focusing on coarse-grained simulations. We highlight work that exposed the membrane-mediated ordering of proteins into lines, meshwork, spirals and other assemblies, in what seems to be a very generic mechanism driven by a combination of short and long-ranged forces. Modulating the mechanical properties of membranes is an underexplored signaling mechanism in various processes deserving of more attention in the near future.
Collapse
Affiliation(s)
- Mijo Simunovic
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute and Computation Institute, The University of Chicago, Chicago, IL 60637, USA; Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute and Computation Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Tesei G, Hellstrand E, Sanagavarapu K, Linse S, Sparr E, Vácha R, Lund M. Aggregate Size Dependence of Amyloid Adsorption onto Charged Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1266-1273. [PMID: 29284092 PMCID: PMC5828364 DOI: 10.1021/acs.langmuir.7b03155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Amyloid aggregates are associated with a range of human neurodegenerative disorders, and it has been shown that neurotoxicity is dependent on aggregate size. Combining molecular simulation with analytical theory, a predictive model is proposed for the adsorption of amyloid aggregates onto oppositely charged surfaces, where the interaction is governed by an interplay between electrostatic attraction and entropic repulsion. Predictions are experimentally validated against quartz crystal microbalance-dissipation experiments of amyloid beta peptides and fragmented fibrils in the presence of a supported lipid bilayer. Assuming amyloids as rigid, elongated particles, we observe nonmonotonic trends for the extent of adsorption with respect to aggregate size and preferential adsorption of smaller aggregates over larger ones. Our findings describe a general phenomenon with implications for stiff polyions and rodlike particles that are electrostatically attracted to a surface.
Collapse
Affiliation(s)
- Giulio Tesei
- Theoretical
Chemistry, Biophysical Chemistry, Biochemistry & Structural Biology,
and Physical Chemistry, Lund University, 221 00 Lund, Sweden
- E-mail: (G.T.)
| | - Erik Hellstrand
- Theoretical
Chemistry, Biophysical Chemistry, Biochemistry & Structural Biology,
and Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | - Kalyani Sanagavarapu
- Theoretical
Chemistry, Biophysical Chemistry, Biochemistry & Structural Biology,
and Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | - Sara Linse
- Theoretical
Chemistry, Biophysical Chemistry, Biochemistry & Structural Biology,
and Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | - Emma Sparr
- Theoretical
Chemistry, Biophysical Chemistry, Biochemistry & Structural Biology,
and Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | - Robert Vácha
- Central European Institute of Technology and Faculty of Science, Masaryk University, 625
00 Brno, Czech Republic
- E-mail: (R.V.)
| | - Mikael Lund
- Theoretical
Chemistry, Biophysical Chemistry, Biochemistry & Structural Biology,
and Physical Chemistry, Lund University, 221 00 Lund, Sweden
- E-mail: (M.L.)
| |
Collapse
|
12
|
Petrova AB, Herold C, Petrov EP. Conformations and membrane-driven self-organization of rodlike fd virus particles on freestanding lipid membranes. SOFT MATTER 2017; 13:7172-7187. [PMID: 28930355 DOI: 10.1039/c7sm00829e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Membrane-mediated interactions and aggregation of colloidal particles adsorbed to responsive elastic membranes are challenging problems relevant for understanding the microscopic organization and dynamics of biological membranes. We experimentally study the behavior of rodlike semiflexible fd virus particles electrostatically adsorbed to freestanding cationic lipid membranes and find that their behavior can be controlled by tuning the membrane charge and ionic strength of the surrounding medium. Three distinct interaction regimes of rodlike virus particles with responsive elastic membranes can be observed. (i) A weakly charged freestanding cationic lipid bilayer in a low ionic strength medium represents a gentle quasi-2D substrate preserving the integrity, structure, and mechanical properties of the membrane-bound semiflexible fd virus, which under these conditions is characterized by a monomer length of 884 ± 4 nm and a persistence length of 2.5 ± 0.2 μm, in perfect agreement with its properties in bulk media. (ii) An increase in the membrane charge leads to the membrane-driven collapse of fd virus particles on freestanding lipid bilayers and lipid nanotubes into compact globules. (iii) When the membrane charge is low, and the mutual electrostatic repulsion of membrane-bound virus particles is screened to a considerable degree, membrane-driven self-organization of membrane-bound fd virus particles into long linear tip-to-tip aggregates showing dynamic self-assembly/disassembly and quasi-semiflexible behavior takes place. These observations are in perfect agreement with the results of recent theoretical and simulation studies predicting that membrane-mediated interactions can control the behavior of colloidal particles adsorbed on responsive elastic membranes.
Collapse
Affiliation(s)
- Anastasiia B Petrova
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, 82152 Martinsried, Germany.
| | | | | |
Collapse
|