1
|
Chen Z, Zhang H, Fan C, Zhuang Y, Yang W, Chen Y, Shen H, Xiao Z, Zhao Y, Li X, Dai J. Adhesive, Stretchable, and Spatiotemporal Delivery Fibrous Hydrogels Harness Endogenous Neural Stem/Progenitor Cells for Spinal Cord Injury Repair. ACS NANO 2022; 16:1986-1998. [PMID: 34842412 DOI: 10.1021/acsnano.1c06892] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aligned fibrous hydrogels capable of recruiting endogenous neural stem/progenitor cells (NSPCs) show great promise in spinal cord injury (SCI) repair. However, the hydrogels suffer from severe issues in close contact with the transected nerve stumps and harnessing the NSPC fate in the lesion microenvironment. Herein, we report aligned collagen-fibrin (Col-FB) fibrous hydrogels with stretchable property, adhesive behavior, and stromal cell-derived factor-1α (SDF1α)/paclitaxel (PTX) spatiotemporal delivery capability. The resultant Col-FB fibrous hydrogels exhibited 1.98 times longer elongation at break (230%), 2.55 times lower Young's modulus (17.93 ± 1.16 KPa), and 2.21 times greater adhesive strength (3.45 ± 0.48 KPa) than collagen (Col) fibrous hydrogels. The soft aligned fibrous hydrogels simulate the oriented microstructure and soft tissue feature of a natural spinal cord and provide elasticity and adhesivity to ensure a persistent close contact with host stumps. The repair of complete transection SCI in rats demonstrates that "middle-to-bilateral" SDF1α gradient release induced endogenous NSPC migration to the lesion site in 10 days, and SDF1α/PTX sequential release promoted neuronal differentiation of the recruited NSPCs over 8 weeks, leading to hind limb locomotion recovery. The presented strategy was proved to be efficient for harnessing endogenous NSPCs, which facilitate SCI repair significantly.
Collapse
Affiliation(s)
- Zhenni Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Haimin Zhang
- CAS Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Caixia Fan
- CAS Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yan Zhuang
- CAS Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wen Yang
- CAS Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yanyan Chen
- CAS Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - He Shen
- CAS Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Chaudhary G, Bharadwaj NA, Braun PV, Ewoldt RH. Exploiting Nonlinear Elasticity for Anomalous Magnetoresponsive Stiffening. ACS Macro Lett 2020; 9:1632-1637. [PMID: 35617065 DOI: 10.1021/acsmacrolett.0c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A paradigm for enhanced magnetorheological elastic materials is introduced and experimentally established. We show that a nonlinearly stiffening polymer matrix can be exploited to achieve anomalous magneto-elastomer stiffening exceeding standard magneto-elastomer theory and experiment in terms of percentage stiffness change and sensitivity to applied magnetic flux. Using a model system of a semiflexible fibrin network embedded with micron sized carbonyl iron particles, we demonstrate that even at a modest particle volume fraction (0.5-4%), a coupling between the magnetically interacting dipoles and a strain-stiffening polymer mesh provides previously unexplored opportunities for material design. Our experiments indicate that confined particles within the fibrin network internally tension and stiffen the polymer mesh when an external field is applied, resulting in a field-dependent stiffening response from the polymer mesh that superposes with the magnetic interparticle interactions.
Collapse
Affiliation(s)
- Gaurav Chaudhary
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - N Ashwin Bharadwaj
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paul V Braun
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Materials Research Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Materials Research Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Chaudhary G, Ghosh A, Bharadwaj NA, Kang JG, Braun PV, Schweizer KS, Ewoldt RH. Thermoresponsive Stiffening with Microgel Particles in a Semiflexible Fibrin Network. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | | | - Jin Gu Kang
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | | | | | | |
Collapse
|
4
|
Ma TM, VanEpps JS, Solomon MJ. Structure, Mechanics, and Instability of Fibrin Clot Infected with Staphylococcus epidermidis. Biophys J 2017; 113:2100-2109. [PMID: 29117532 DOI: 10.1016/j.bpj.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022] Open
Abstract
Health care-associated infection, over half of which can be attributed to indwelling medical devices, is a strong risk factor for thromboembolism. Although most experimental models of medical device infection draw upon isolated bacterial biofilms, in fact there is no infection without host protein contribution. Here we study, to our knowledge, a new model for medical device infection-that of an infected fibrin clot-and show that the common blood-borne pathogen Staphylococcus epidermidis influences this in vitro model of a blood clot mechanically and structurally on both microscopic and macroscopic scales. Bacteria present during clot formation produce a visibly disorganized microstructure that increases clot stiffness and triggers mechanical instability over time. Our results provide insight into the observed correlation between medical device infection and thromboembolism; the increase in model clot heterogeneity shows that S. epidermidis can rupture a fibrin clot. The resultant embolization of the infected clot can contribute to the systemic dissemination of the pathogen.
Collapse
Affiliation(s)
- Tianhui Maria Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - J Scott VanEpps
- Department of Emergency Medicine, Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan.
| | - Michael J Solomon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|