1
|
Gowda A, Pathak SK, Rohaley GAR, Acharjee G, Oprandi A, Williams R, Prévôt ME, Hegmann T. Organic chiral nano- and microfilaments: types, formation, and template applications. MATERIALS HORIZONS 2024; 11:316-340. [PMID: 37921354 DOI: 10.1039/d3mh01390a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Organic chiral nanofilaments are part of an important class of nanoscale chiral materials that has recently been receiving significant attention largely due to their potential use in applications such as optics, photonics, metameterials, and potentially a range of medical as well as sensing applications. This review will focus on key examples of the formation of such nano- and micro-filaments based on carbon nanofibers, polymers, synthetic oligo- and polypeptides, self-assembled organic molecules, and one prominent class of liquid crystals. The most critical aspects discussed here are the underlying driving forces for chiral filament formation, potentially answering why specific sizes and shapes are formed, what molecular design strategies are working equally well or rather differently among these materials classes, and what uses and applications are driving research in this fascinating field of materials science.
Collapse
Affiliation(s)
- Ashwathanarayana Gowda
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Suraj Kumar Pathak
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Grace A R Rohaley
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Gourab Acharjee
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Andrea Oprandi
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Ryan Williams
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
2
|
Thermodynamics driving phytochemical self-assembly morphological change and efficacy enhancement originated from single and co-decoction of traditional chinese medicine. J Nanobiotechnology 2022; 20:527. [PMID: 36510210 PMCID: PMC9743513 DOI: 10.1186/s12951-022-01734-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Through the self-assembled strategy to improve the clinical efficacy of the existing drugs is the focus of current research. Herbal formula granule is a kind of modern dosage form of traditional Chinese medicine (TCM) which has sprung up in recent decades. However, whether it is equivalent to the TCM decoction that has been used for thousands of years has always been a controversial issue. In this paper, taking the herb pair of Coptidis Rhizoma-Scutellariae Radix and its main component berberine-baicalin as examples, the differences and mechanisms of self-assemblies originated from the co-decoction and physical mixture were studied, respectively. Moreover, the relationship between the morphology and antibacterial effects of self-assemblies was illuminated via multi-technology. Our study revealed that the physical mixture's morphology of both the herb pair and the phytochemicals was nanofibers (NFs), while their co-decoction's morphology was nanospheres (NPs). We also found that the antibacterial activity was enhanced with the change of self-assemblies' morphology after the driving by thermal energy. This might be attributed to that NPs could influence amino acid biosynthesis and metabolism in bacteria. Current study provides a basis that co-decoction maybe beneficial to enhance activity and reasonable use of herbal formula granule in clinic.
Collapse
|
3
|
Kim KY, Kim J, Moon CJ, Liu J, Lee SS, Choi MY, Feng C, Jung JH. Co‐Assembled Supramolecular Nanostructure of Platinum(II) Complex through Helical Ribbon to Helical Tubes with Helical Inversion. Angew Chem Int Ed Engl 2019; 58:11709-11714. [DOI: 10.1002/anie.201905472] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
| | - Jaehyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
| | - Cheol Joo Moon
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
| | - Jinying Liu
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
| | - Chuanliang Feng
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
| |
Collapse
|
4
|
Kim KY, Kim J, Moon CJ, Liu J, Lee SS, Choi MY, Feng C, Jung JH. Co‐Assembled Supramolecular Nanostructure of Platinum(II) Complex through Helical Ribbon to Helical Tubes with Helical Inversion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
| | - Jaehyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
| | - Cheol Joo Moon
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
| | - Jinying Liu
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
| | - Chuanliang Feng
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea
| |
Collapse
|
5
|
Lu J, Hu J, Liang Y, Cui W. The Supramolecular Organogel Formed by Self-Assembly of Ursolic Acid Appended with Aromatic Rings. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E614. [PMID: 30781693 PMCID: PMC6416721 DOI: 10.3390/ma12040614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022]
Abstract
Ursolic acid (UA) as a natural ursane-triterpenoid has rich pharmacological activities. We have found that it possesses aggregation properties and could self-assemble into organogels. Based on the aggregation property of ursolic acid in suitable solvents, its derivative appended with aromatic rings by amide groups was synthesized. The property of self-assembly into organogel was studied in this paper. The results revealed that this derivative could form supramolecular gel in halogenated benzene and also gelate chloroform in the presence of toluene or p-xylene. By Fourier-transform infrared spectra (FT-IR) and variable temperature proton nuclear magnetic resonance (¹H NMR), it was proved that intermolecular hydrogen bonding and π⁻π stacking interaction were the primary driving forces for the aggregation to form organogel.
Collapse
Affiliation(s)
- Jinrong Lu
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, China.
| | - Jinshan Hu
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, China.
| | - Yinghua Liang
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, China.
| | - Wenquan Cui
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
6
|
Jiang H, Fan H, Jiang Y, Zhang L, Liu M. Chiral nanostructures self-assembled from nitrocinnamic amide amphiphiles: substituent and solvent effects. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1608-1617. [PMID: 31467823 PMCID: PMC6693415 DOI: 10.3762/bjnano.10.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/09/2019] [Indexed: 05/20/2023]
Abstract
Chiral nanostructures, such as α-helical proteins and double helix DNA, are widely found in biological systems and play a significant role in the biofunction of life. These structures are essentially fabricated through the covalent or noncovalent bonds between small chiral molecules. It is thus an important issue to understand how small chiral molecules can form chiral nanostructures. Here, using a series of isomeric nitrocinnamic amide derivatives, we have investigated the self-assembly behavior and the effect of the substituent position as well as the solvent on the formation of chiral nanostructures. It was found that totally different chiral nanostructures were formed due to the different positions of the nitro group on the cinnamic amide. Moreover, it was found that the chiral sense of the self-assembled nanostructures can be regulated by the solvent whereby helicity inversion was observed. This work provides a simple way to regulate the self-assembly pathway via molecular design and choice of solvent for the controlled creation of chiral nanostructures.
Collapse
Affiliation(s)
- Hejin Jiang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huahua Fan
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqian Jiang
- Laboratory for Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Yu S, Sun R, Chen T, Jin LY. Supramolecular helical nanostructures from self-assembly of coil-rod-coil amphiphilic molecules incorporating the dianthranide unit. SOFT MATTER 2018; 14:6822-6827. [PMID: 30043028 DOI: 10.1039/c8sm01217b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Coil-rod-coil amphipathic oligomers composed of a rigid dianthranide unit and a hydrophilic branched oligoether as the coil segment were synthesized. These amphiphilic molecules self-assemble into clew-like aggregates composed of fibres or helical nanofibers in aqueous solution. Subsequently, supramolecular polymers were produced from the above objects through charge-transfer interactions by adding 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (4F-TCNQ). Interestingly, temperature-sensitive supramolecular chirality was induced by lateral methyl units located at the interface of the rigid and flexible segments. However, upon addition of the electron-acceptor molecule, 4F-TCNQ, strong donor-acceptor interactions restrict any change in supramolecular chirality with temperature.
Collapse
Affiliation(s)
- Shengsheng Yu
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, and Department of Chemistry, College of Science, Yanbian University, No. 977 Gongyuan Road, Yanji 133002, People's Republic of China.
| | - Rui Sun
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, and Department of Chemistry, College of Science, Yanbian University, No. 977 Gongyuan Road, Yanji 133002, People's Republic of China.
| | - Tie Chen
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, and Department of Chemistry, College of Science, Yanbian University, No. 977 Gongyuan Road, Yanji 133002, People's Republic of China.
| | - Long Yi Jin
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, and Department of Chemistry, College of Science, Yanbian University, No. 977 Gongyuan Road, Yanji 133002, People's Republic of China.
| |
Collapse
|