1
|
Douliez JP. Double Emulsion Droplets as a Plausible Step to Fatty Acid Protocells. SMALL METHODS 2023; 7:e2300530. [PMID: 37574259 DOI: 10.1002/smtd.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/07/2023] [Indexed: 08/15/2023]
Abstract
It is assumed that life originated on the Earth from vesicles made of fatty acids. These amphiphiles are the simplest chemicals, which can be present in the prebiotic soup, capable of self-assembling into compartments mimicking modern cells. Production of fatty acid vesicles is widely studied, as their growing and division. However, how prebiotic chemicals require to further yield living cells encapsulated within protocells remains unclear. Here, one suggests a scenario based on recent studies, which shows that phospholipid vesicles can form from double emulsions affording facile encapsulation of cargos. In these works, water-in-oil-in-water droplets are produced by microfluidics, having dispersed lipids in the oil. Dewetting of the oil droplet leaves the internal aqueous droplet covered by a lipid bilayer, entrapping cargos. In this review, formation of fatty acid protocells is briefly reviewed, together with the procedure for preparing double emulsions and vesicles from double emulsion and finally, it is proposed that double emulsion droplets formed in the deep ocean where undersea volcano expulsed materials, with fatty acids (under their carboxylic form) and alkanols as the oily phase, entrapping hydrosoluble prebiotic chemicals in a double emulsion droplet core. Once formed, double emulsion droplets can move up to the surface, where an increase of pH, variation of pressure and/or temperature may have allowed dewetting of the oily droplet, leaving a fatty acid vesicular protocell with encapsulated prebiotic materials.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- Biologie du Fruit et Pathologie, UMR 1332, Institut National de Recherche Agronomique (INRAE), Université De Bordeaux, Villenave d'Ornon, F-33140, France
| |
Collapse
|
2
|
Sakr MG, El-Zahaby SA, Al-Mahallawi AM, Ghorab DM. A novel reverse micelle based cationic double nanoemulsion as a potential nanoplatform for enhancing the anitglucomal activity of betaxolol hydrochloride; formulation, in vitro characterization, ex vivo permeation and in vivo pharmacodynamic evaluation in glaucomatous rabbits’ eyes. J Drug Deliv Sci Technol 2023; 90:105112. [DOI: 10.1016/j.jddst.2023.105112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
|
3
|
Chen Q, Zheng J. Self-assembly and structures of nanoscale double emulsion droplets through coarse-grained molecular dynamics simulations. SOFT MATTER 2023; 19:7731-7743. [PMID: 37789812 DOI: 10.1039/d3sm00656e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Examples of self-assembled multiple emulsion droplets on the nanometre scale are very rare. In this work, we use coarse-grained (CG) molecular dynamics simulations to study the self-assembly of ternary mixtures consisting of water, n-heptane, and nonionic surfactant tetraethylene glycol monododecyl ether (C12E4). The water volume fractions studied are 1%, 3%, and 5%, respectively. Various nanoscale emulsions are obtained in a spontaneous process. When the water/surfactant volume ratio vm/s = 1.0/1.0, the obtained emulsion droplets are identified as oil-in-water-in-oil (O/W/O) double types, consisting of an oil core, an inner surfactant layer, a water layer, and an outer surfactant layer. The water molecules are distributed around the hydrophilic ends of the surfactants, while the hydrophobic ends of the surfactants wrap the oil cores and penetrate into the oil bulk. Hydrogen-bond interactions among water and the hydrophilic ends of the surfactants form cross-links that stabilize the double emulsion droplets. The sizes of all the oil cores inside the droplets are <6 nm in diameter, even with the highest water volume fraction of 5%. Both the concentration of free water molecules on the order of 10-6 mol/cm3 and the favourable energy change during emulsion formation indicate that the emulsion droplets are thermodynamically stable. In contrast, for vm/s = 1.0/5.5, no double emulsion but a simple water-in-oil emulsion was observed, with morphologies evolving from oblate to bicontinuous phases with an increase in the water volume fraction from 1% to 5%. Our coarse-grained molecular dynamics simulations provide valuable insight for the preparation of nanoscale double emulsions and the characterization of their structures.
Collapse
Affiliation(s)
- Qiubo Chen
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore.
| | - Jianwei Zheng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore.
| |
Collapse
|
4
|
Douliez JP, Arlaut A, Beven L, Fameau AL, Saint-Jalmes A. One step generation of single-core double emulsions from polymer-osmose-induced aqueous phase separation in polar oil droplets. SOFT MATTER 2023; 19:7562-7569. [PMID: 37751151 DOI: 10.1039/d3sm00970j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Water-in-oil-in-water emulsions (W/O/W) are aqueous droplet(s) embedded within oil droplets dispersed in a continuous water phase. They are attracting interest due to their possible applications from cosmetic to food science since both hydrosoluble and liposoluble cargos can be encapsulated within. They are generally prepared using a one-step or a two-step method, phase inversion and also via spontaneous emulsification. Here, we describe a general and simple one-step method based on hydrophilic polymers dispersed in polar oils to generate osmose-induced diffusion of water into oil droplets, forming polymer-rich aqueous droplets inside the oil droplets. Polyethylene glycol, but also other hydrophilic polymers (branched polyethylene imine or polyvinyl pyrrolidone) were successfully dispersed in 1-octanol or other polar oils (oleic acid or tributyrin) to produce an O/W emulsion that spontaneously transformed into a W1/O/W2 emulsion, with the inner aqueous droplet (W1) only containing the hydrophilic polymer initially dispersed in oil. By combining single drop experiments, with macroscopic viscosity measurements, we demonstrated that the double emulsion resulted of water diffusion, which amplitude could be adjusted by the polymer concentration. The production of high internal phase emulsions was also achieved, together with a pH-induced transition from multiple to single core double emulsion. We expect this new method for producing double emulsions to find applications in domains of microencapsulation and materials chemistry.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave dOrnon, France.
| | - Anais Arlaut
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000, Rennes, France.
| | - Laure Beven
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave dOrnon, France.
| | - Anne-Laure Fameau
- University Lille, CNRS, INRAE, Centrale Lille, UMET, 369 Rue Jules Guesde, F-59000 Lille, France
| | - Arnaud Saint-Jalmes
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000, Rennes, France.
| |
Collapse
|
5
|
Wang X, Anton H, Vandamme T, Anton N. Updated insight into the characterization of nano-emulsions. Expert Opin Drug Deliv 2023; 20:93-114. [PMID: 36453201 DOI: 10.1080/17425247.2023.2154075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION In most of the studies, nano-emulsion characterization is limited to their size distribution and zeta potential. In this review, we present an updated insight of the characterization methods of nano-emulsions, including new or unconventional experimental approaches to explore in depth the nano-emulsion properties. AREA COVERED We propose an overview of all the main techniques used to characterize nano-emulsions, including the most classical ones, up to in vitro, ex vivo and in vivo evaluation. Innovative approaches are then presented in the second part of the review that presents innovative, experimental techniques less known in the field of nano-emulsion such as the nanoparticle tracking analysis, small-angle X-ray scattering, Raman spectroscopy, and nuclear magnetic resonance. Finally, in the last part we discuss the use of lipophilic fluorescent probes and imaging techniques as an emerging tool to understand the nano-emulsion droplet stability, surface decoration, release mechanisms, and in vivo fate. EXPERT OPINION This review is mostly intended for a broad readership and provides key tools regarding the choice of the approach to characterize nano-emulsions. Innovative and uncommon methods will be precious to disclose the information potentially reachable behind a formulation of nano-emulsions, not always known in first intention and with conventional methods.
Collapse
Affiliation(s)
- Xinyue Wang
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Halina Anton
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, F-67000 Strasbourg, France
| | - Thierry Vandamme
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| |
Collapse
|
6
|
Hema S, Karmakar A, Das RK, Srivastava P. Simple formulation and characterization of double emulsion variant designed to carry three bioactive agents. Heliyon 2022; 8:e10397. [PMID: 36097481 PMCID: PMC9463587 DOI: 10.1016/j.heliyon.2022.e10397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple emulsions are thermodynamically stable systems that mark applications in various fields including drug delivery systems. They allow enhanced availability of drugs, greater absorption, and present reduced toxicity, among other desirable properties. In this work, we aimed to formulate a unique double emulsion (O1/W + W1/O2/W/W) with three bioactive components viz. Ocimum tenuiflorum oil, Cocos nucifera oil and crystalline Cinnamomum camphora. Three surfactants with different HLB values viz. Tween-20, Tween-80 and Triton X-100 were used for the emulsification process. The method followed was simple as compared to current methods employed for formulating multiple emulsions. Formulation was characterized using techniques of bright field microscopy, Dynamic Light Scattering (DLS), High-Resolution Transmission Electron Microscopy (HR-TEM) and Fourier-transform infrared spectroscopy (FTIR). Image processing tools were also used to characterize the formulation, which reliably cross-verified the observations from conventional characterization techniques. The potency of individual components of emulsion was compared with the prepared double emulsion model by testing the activity on two pathologically relevant bacterial strains: Fusobacterium nucleatum (FN) and Porphyromonas gingivalis (PG).
Collapse
Affiliation(s)
- S.K. Hema
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Aparajita Karmakar
- Centre for Biomaterials and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Raunak Kumar Das
- Centre for Biomaterials and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Priyanka Srivastava
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Corresponding author.
| |
Collapse
|
7
|
Akram S, Anton N, Omran Z, Vandamme T. Water-in-Oil Nano-Emulsions Prepared by Spontaneous Emulsification: New Insights on the Formulation Process. Pharmaceutics 2021; 13:1030. [PMID: 34371723 PMCID: PMC8309089 DOI: 10.3390/pharmaceutics13071030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
Nano-emulsions consist of stable suspensions of nano-scaled droplets that have huge loading capacities and are formulated with safe compounds. For these reasons, a large number of studies have described the potential uses of nano-emulsions, focusing on various aspects such as formulation processes, loading capabilities, and surface modifications. These studies typically concern direct nano-emulsions (i.e., oil-in-water), whereas studies on reverse nano-emulsions (i.e., water-in-oil) remain anecdotal. However, reverse nano-emulsion technology is very promising (e.g., as an alternative to liposome technology) for the development of drug delivery systems that encapsulate hydrophilic compounds within double droplets. The spontaneous emulsification process has the added advantages of optimization of the energetic yield, potential for industrial scale-up, improved loading capabilities, and preservation of fragile compounds targeted for encapsulation. In this study, we propose a detailed investigation of the processes and formulation parameters involved in the spontaneous nano-emulsification that produces water-in-oil nano-emulsions. The following details were addressed: (i) the order of mixing of the different compounds (method A and method B), (ii) mixing rates, (iii) amount of surfactants, (iv) type and mixture of surfactants, (v) amount of dispersed phase, and (vi) influence of the nature of the oil. The results emphasized the effects of the formulation parameters (e.g., the volume fraction of the dispersed phase, nature or concentration of surfactant, or nature of the oil) on the nature and properties of the nano-emulsions formed.
Collapse
Affiliation(s)
- Salman Akram
- Faculty of Pharmacy, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France; (S.A.); (N.A.)
| | - Nicolas Anton
- Faculty of Pharmacy, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France; (S.A.); (N.A.)
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, F-67000 Strasbourg, France
| | - Ziad Omran
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Thierry Vandamme
- Faculty of Pharmacy, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France; (S.A.); (N.A.)
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
8
|
Water-in-Oil-in-Water Nanoemulsions Containing Temulawak ( Curcuma xanthorriza Roxb) and Red Dragon Fruit ( Hylocereus polyrhizus) Extracts. Molecules 2021; 26:molecules26010196. [PMID: 33401775 PMCID: PMC7795868 DOI: 10.3390/molecules26010196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
Hydrophobic curcumin in temulawak extract and hydrophilic betacyanin in red dragon fruit extract are high-value bioactive compounds with extensive applications in functional food. In this study, these extracts were encapsulated in water-in-oil-in-water (w/o/w) nanoemulsions as a delivery system using a two-step high-energy emulsification method. PGPR and Span 20 were used as lipophilic emulsifiers for the primary w/o emulsion. The most stable w/o/w formulation with the least oil phase separation of 5% v/v consisted of w/o emulsion (15% w/w) and Tween 80 (1.5% w/w) as hydrophilic emulsifier. The formulation was characterized by a 189-nm mean droplet diameter, 0.16 polydispersity index, and –32 mV zeta potential. The freeze–thaw stability may be attributed to the combination of low w/o emulsion content and high Tween 80 concentration in the outer water phase of the w/o/w nanoemulsions used in this study. The IC50 values of the nanoemulsion and the red dragon fruit extract were similar. It means that the higher concentration of curcumin in the nanoemulsions and the lower IC50 value of temulawak extract ensured sufficient antioxidant activities of the w/o/w nanoemulsions.
Collapse
|
9
|
Preparation of stable multiple emulsions using food-grade emulsifiers: evaluating the effects of emulsifier concentration, W/O phase ratio, and emulsification process. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03879-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
10
|
Pucek A, Tokarek B, Waglewska E, Bazylińska U. Recent Advances in the Structural Design of Photosensitive Agent Formulations Using "Soft" Colloidal Nanocarriers. Pharmaceutics 2020; 12:E587. [PMID: 32599791 PMCID: PMC7356306 DOI: 10.3390/pharmaceutics12060587] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for effective delivery of photosensitive active compounds has resulted in the development of colloid chemistry and nanotechnology. Recently, many kinds of novel formulations with outstanding pharmaceutical potential have been investigated with an expansion in the design of a wide variety of "soft" nanostructures such as simple or multiple (double) nanoemulsions and lipid formulations. The latter can then be distinguished into vesicular, including liposomes and "smart" vesicles such as transferosomes, niosomes and ethosomes, and non-vesicular nanosystems with solid lipid nanoparticles and nanostructured lipid carriers. Encapsulation of photosensitive agents such as drugs, dyes, photosensitizers or antioxidants can be specifically formulated by the self-assembly of phospholipids or other amphiphilic compounds. They are intended to match unique pharmaceutic and cosmetic requirements and to improve their delivery to the target site via the most common, i.e., transdermal, intravenous or oral administration routes. Numerous surface modifications and functionalization of the nanostructures allow increasing their effectiveness and, consequently, may contribute to the treatment of many diseases, primarily cancer. An increasing article number is evidencing significant advances in applications of the different classes of the photosensitive agents incorporated in the "soft" colloidal nanocarriers that deserved to be highlighted in the present review.
Collapse
Affiliation(s)
| | | | | | - Urszula Bazylińska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (A.P.); (B.T.); (E.W.)
| |
Collapse
|
11
|
Akram S, Wang X, Vandamme TF, Collot M, Rehman AU, Messaddeq N, Mély Y, Anton N. Toward the Formulation of Stable Micro and Nano Double Emulsions through a Silica Coating on Internal Water Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2313-2325. [PMID: 30630316 DOI: 10.1021/acs.langmuir.8b03919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Delivery systems able to coencapsulate both hydrophilic and hydrophobic species are of great interest in both fundamental research and industrial applications. Water-in-oil-in-water (w1/O/W2) emulsions are interesting systems for this purpose, but they suffer from limited stability. In this study, we propose an innovative approach to stabilize double emulsions by the synthesis of a silica membrane at the water/oil interface of the primary emulsion (i.e., inner w1/O emulsion). This approach allows the formulation of stable double emulsions through a two-step process, enabling high encapsulation efficiencies of model hydrophilic dyes encapsulated in the internal droplets. This approach also decreases the scale of the double droplets up to the nanoscale, which is not possible without silica stabilization. Different formulation and processing parameters were explored in order to optimize the methodology. Physicochemical characterization was performed by dynamic light scattering, encapsulation efficiency measurements, release profiles, and optical and transmission electron microscopies.
Collapse
|
12
|
Ding S, Serra CA, Vandamme TF, Yu W, Anton N. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. J Control Release 2019; 295:31-49. [DOI: 10.1016/j.jconrel.2018.12.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022]
|
13
|
Ramalingam S, Le Bourdon G, Pouget E, Scalabre A, Rao JR, Perro A. Adsorption of Proteins on Dual Loaded Silica Nanocapsules. J Phys Chem B 2019; 123:1708-1717. [DOI: 10.1021/acs.jpcb.8b12028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sathya Ramalingam
- Inorganic and Physical Chemistry Laboratory, Council of Scientific & Industrial Research-Central Leather Research Institute, Adyar, Chennai-6000 20, India
| | - Gwenaelle Le Bourdon
- Institut des Sciences Moléculaires (ISM) - CNRS - Université de Bordeaux - Bordeaux INP, UMR 5255, 351 cours de la libération, 33405 Talence, France
| | - Emilie Pouget
- Chimie et Biologie des Membranes et des Nanoobjets (CBMN), CNRS - Université Bordeaux - Bordeaux INP, UMR 5248, Allée St Hilaire, Bat B14, 33607 Pessac, France
| | - Antoine Scalabre
- Chimie et Biologie des Membranes et des Nanoobjets (CBMN), CNRS - Université Bordeaux - Bordeaux INP, UMR 5248, Allée St Hilaire, Bat B14, 33607 Pessac, France
| | - Jonnalagadda Raghava Rao
- Inorganic and Physical Chemistry Laboratory, Council of Scientific & Industrial Research-Central Leather Research Institute, Adyar, Chennai-6000 20, India
| | - Adeline Perro
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| |
Collapse
|
14
|
Liu G, Huang W, Babii O, Gong X, Tian Z, Yang J, Wang Y, Jacobs RL, Donna V, Lavasanifar A, Chen L. Novel protein-lipid composite nanoparticles with an inner aqueous compartment as delivery systems of hydrophilic nutraceutical compounds. NANOSCALE 2018; 10:10629-10640. [PMID: 29845181 DOI: 10.1039/c8nr01009a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Food protein and lipid based nanoparticles have attracted recent interest as a means of delivering nutraceuticals. Nanoparticle encapsulation of nutraceuticals faces challenges to overcome for it to be readily applied in the food industry, such as low encapsulation efficiency for hydrophilic compounds and poor stability once in the gastrointestinal tract. This research introduces a new protein-lipid composite nanoparticle with a three-layered structure (a barley protein layer, α-tocopherol layer and phospholipid layer) and an inner aqueous compartment to load hydrophilic nutraceuticals. This delivery system showed efficient encapsulation of vitamin B12 (69%) and controlled release behavior in simulated gastrointestinal media. An in vitro cell evaluation demonstrated that nanoparticles could internalize into Caco-2 cells via energy-dependent endocytosis and significantly increase the uptake and transport efficiency of vitamin B12 in this model. In vivo, the developed vitamin B12 loaded nanoparticle showed increased serum vitamin B12 levels upon oral administration and reduced the methylmalonic acid level more efficiently than the free form in rats. A 14-day in vivo toxicity study showed no evidence of toxicity in rats implying the safety of the developed nanoparticles in long term use. Overall, the results of this study show the great potential of the developed nanoparticles in increasing the absorption of vitamin B12 upon oral administration.
Collapse
Affiliation(s)
- Guangyu Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Alberta, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Visaveliya NR, Köhler JM. Single-Step In Situ Assembling Routes for the Shape Control of Polymer Nanoparticles. Biomacromolecules 2018; 19:1047-1064. [DOI: 10.1021/acs.biomac.8b00034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nikunjkumar R. Visaveliya
- Department of Physical Chemistry and Microreaction Technology, Technical University of Ilmenau, Weimarer Strasse 32, D-98693 Ilmenau, Germany
| | - J. Michael Köhler
- Department of Physical Chemistry and Microreaction Technology, Technical University of Ilmenau, Weimarer Strasse 32, D-98693 Ilmenau, Germany
| |
Collapse
|
16
|
Development of triptolide-nanoemulsion gels for percutaneous administration: physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics. J Nanobiotechnology 2017; 15:88. [PMID: 29202753 PMCID: PMC5715633 DOI: 10.1186/s12951-017-0323-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/25/2017] [Indexed: 12/24/2022] Open
Abstract
Background This work aimed to provide useful information on the use of nanoemulsions for the percutaneous administration of triptolide. Lipid nanosystems have great potential for transdermal drug delivery. Nanoemulsions and nanoemulsion gels were prepared to enhance percutaneous permeation. Microstructure and in vitro/in vivo percutaneous delivery characteristics of triptolide (TPL)-nanoemulsions and TPL-nanoemulsion gels were compared. The integrity of the nanoemulsions and nanoemulsion gels during transdermal delivery and its effects on the surface of skin were also investigated. The penetration mechanisms of nanoemulsions and nanoemulsion gels were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The transport characteristics of fluorescence-labelled nanoemulsions were probed using laser scanning confocal microscopy. A chronic dermatitis/eczema model in mice ears and the pharmacodynamic of the TPL-nanoemulsion gels were also investigated. Results Compared to TPL gels, significantly greater cumulative amounts of TPL-nanoemulsion gels and TPL-nanoemulsions penetrated rat skin in vitro. The in vivo microdialysis showed the concentration–time curve AUC0–t for TPL-NPs is bigger than the TPL-gels. At the same time, TPL-NPs had a larger effect on the surface of skin. By hydrating keratin and changing the structure of both the stratum corneum lipids and keratin, nanoemulsions and nanoemulsion gels influence skin to promote percutaneous drug penetration. Both hairfollicles and the stratum corneum are also important in this transdermal drug delivery system. Moderate and high dosages of the TPL-nanoemulsion gels can significantly improve the symptoms of dermatitis/eczema inflammation and edema erythematic in mice ears and can reduce the expression of IFN-γ and IL-4. Moreover, the TPL-nanoemulsion gels cause less gastrointestinal damage than that of the Tripterygium wilfordii oral tablet does. Conclusions Nanoemulsions could be suitable for transdermal stably releasing drugs and maintaining the effective drug concentration. The TPL-nanoemulsion gels provided higher percutaneous amounts than other carriers did. These findings suggest that nanoemulsion gels could be promising percutaneous carriers for TPL. The TPL-nanoemulsion gels have a significant treatment effect on dermatitis/eczema in the mice model and is expected to provide a new, low-toxicity and long-term preparation for the clinical treatment of dermatitis/eczema in transdermal drug delivery systems. Electronic supplementary material The online version of this article (10.1186/s12951-017-0323-0) contains supplementary material, which is available to authorized users.
Collapse
|