1
|
Huang W, Zeng Y, Shuai W, Fu W, Wen R, Li Y, Fu Q, He F, Yang H. Improvement in mechanical strength and biological function of 3D-printed trimagnesium phosphate bioceramic scaffolds by incorporating strontium orthosilicate. J Mech Behav Biomed Mater 2024; 157:106606. [PMID: 38838542 DOI: 10.1016/j.jmbbm.2024.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Trimagnesium phosphate (TMP) bioceramic scaffolds are deemed as promising bone grafts, but their mechanical and biological properties are yet to be improved. In the study, strontium orthosilicate (SrOS) was used to modify the TMP scaffolds, whose macroporous structure was constructed by the filament deposition-type 3D printing method. The new phases of SrMg2(PO4)2 and Sr2MgSi2O7, which showed nanocrystalline topography, were produced in the 3D-printed TMP/SrOS bioceramic composite scaffolds. The compressive strength (1.8-64.1 MPa) and porosity (39.7%-71.4%) of the TMP/SrOS scaffolds could be readily tailored by changing the amounts of SrOS additives and the sintering temperature. The TMP/SrOS scaffolds gradually degraded in the aqueous solution, consequently releasing ions of magnesium, strontium and silicon. In contrast with the TMP scaffolds, the TMP/SrOS bioceramic scaffolds had profoundly higher compressive strength, and enhanced cell proliferative and osteogenic activities. The TMP/SrOS scaffolds incorporated with 5 wt% SrOS had the highest mechanical strength and beneficial cellular function, which made them promising for treating different sites of bone defects.
Collapse
Affiliation(s)
- Wenhao Huang
- School of Electromechanical Engineering, Guangdong University of Technology, 510006, Guangzhou, China
| | - Yifeng Zeng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Wei Shuai
- Jiangxi Key Laboratory of Tissue Engineering, Gannan Medical University, 341000, Ganzhou, China
| | - Wenhao Fu
- School of Electromechanical Engineering, Guangdong University of Technology, 510006, Guangzhou, China
| | - Renzhi Wen
- School of Electromechanical Engineering, Guangdong University of Technology, 510006, Guangzhou, China
| | - Yanfei Li
- School of Electromechanical Engineering, Guangdong University of Technology, 510006, Guangzhou, China
| | - Qiuyu Fu
- School of Electromechanical Engineering, Guangdong University of Technology, 510006, Guangzhou, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, 510006, Guangzhou, China.
| | - Hui Yang
- Jiangxi Key Laboratory of Tissue Engineering, Gannan Medical University, 341000, Ganzhou, China.
| |
Collapse
|
2
|
Gu K, Tan Y, Li S, Chen S, Lin K, Tang Y, Zhu M. Sensory Nerve Regulation via H3K27 Demethylation Revealed in Akermanite Composite Microspheres Repairing Maxillofacial Bone Defect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400242. [PMID: 38874525 PMCID: PMC11321702 DOI: 10.1002/advs.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Maxillofacial bone defects exhibit intricate anatomy and irregular morphology, presenting challenges for effective treatment. This study aimed to address these challenges by developing an injectable bioactive composite microsphere, termed D-P-Ak (polydopamine-PLGA-akermanite), designed to fit within the defect site while minimizing injury. The D-P-Ak microspheres biodegraded gradually, releasing calcium, magnesium, and silicon ions, which, notably, not only directly stimulated the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) but also activated sensory nerve cells to secrete calcitonin gene-related peptide (CGRP), a key factor in bone repair. Moreover, the released CGRP enhanced the osteogenic differentiation of BMSCs through epigenetic methylation modification. Specifically, inhibition of EZH2 and enhancement of KDM6A reduced the trimethylation level of histone 3 at lysine 27 (H3K27), thereby activating the transcription of osteogenic genes such as Runx2 and Osx. The efficacy of the bioactive microspheres in bone repair is validated in a rat mandibular defect model, demonstrating that peripheral nerve response facilitates bone regeneration through epigenetic modification. These findings illuminated a novel strategy for constructing neuroactive osteo-inductive biomaterials with potential for further clinical applications.
Collapse
Affiliation(s)
- Kaijun Gu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Yu Tan
- Department of Orthodontics, Shanghai Stomatological Hospital and School of StomatologyFudan University Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan UniversityShanghai200001China
| | - Sitong Li
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Siyue Chen
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Kaili Lin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
- Department of OrthodonticsShanghai Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghai200011China
| | - Yanmei Tang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Min Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| |
Collapse
|
3
|
Li R, Zhu Z, Zhang B, Jiang T, Zhu C, Mei P, Jin Y, Wang R, Li Y, Guo W, Liu C, Xia L, Fang B. Manganese Enhances the Osteogenic Effect of Silicon-Hydroxyapatite Nanowires by Targeting T Lymphocyte Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305890. [PMID: 38039434 PMCID: PMC10811488 DOI: 10.1002/advs.202305890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Indexed: 12/03/2023]
Abstract
Biomaterials encounter considerable challenges in extensive bone defect regeneration. The amelioration of outcomes may be attainable through the orchestrated modulation of both innate and adaptive immunity. Silicon-hydroxyapatite, for instance, which solely focuses on regulating innate immunity, is inadequate for long-term bone regeneration. Herein, extra manganese (Mn)-doping is utilized for enhancing the osteogenic ability by mediating adaptive immunity. Intriguingly, Mn-doping engenders heightened recruitment of CD4+ T cells to the bone defect site, concurrently manifesting escalated T helper (Th) 2 polarization and an abatement in Th1 cell polarization. This consequential immune milieu yields a collaborative elevation of interleukin 4, secreted by Th2 cells, coupled with attenuated interferon gamma, secreted by Th1 cells. This orchestrated interplay distinctly fosters the osteogenesis of bone marrow stromal cells and effectuates consequential regeneration of the mandibular bone defect. The modulatory mechanism of Th1/Th2 balance lies primarily in the indispensable role of manganese superoxide dismutase (MnSOD) and the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). In conclusion, this study highlights the transformative potential of Mn-doping in amplifying the osteogenic efficacy of silicon-hydroxyapatite nanowires by regulating T cell-mediated adaptive immunity via the MnSOD/AMPK pathway, thereby creating an anti-inflammatory milieu favorable for bone regeneration.
Collapse
Affiliation(s)
- Ruomei Li
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Zhiyu Zhu
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Bolin Zhang
- Department of StomatologyXinHua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Jiao Tong University1665 Kongjiang RoadShanghai200092China
| | - Ting Jiang
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Cheng Zhu
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Peng Mei
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Yu Jin
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Ruiqing Wang
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Yixin Li
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Weiming Guo
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Chengxiao Liu
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Lunguo Xia
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Bing Fang
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| |
Collapse
|
4
|
Xia L, Wu T, Chen L, Mei P, Liu L, Li R, Shu M, Huan Z, Wu C, Fang B. Silicon-Based Biomaterials Modulate the Adaptive Immune Response of T Lymphocytes to Promote Osteogenesis/Angiogenesis via Epigenetic Regulation. Adv Healthc Mater 2023; 12:e2302054. [PMID: 37842937 DOI: 10.1002/adhm.202302054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Silicon (Si)-based biomaterials are widely applied for bone regeneration. However, the underlying mechanisms of the materials function remain largely unknown. T lymphocyte-mediated adaptive immune response plays a vital role in the process of bone regeneration. In the current study, mesoporous silica (MS) is used as a model material of Si-based biomaterials. It shows that the supernatant of CD4+ T lymphocytes pretreated with MS extract significantly promotes the vascularized bone regeneration. The potential mechanism is closely related to the fact that MS extract can reduce the expression of regulatory factor X-1 (RFX-1) in CD4+ T lymphocytes. This may result in the overexpression of interleukin-17A (IL-17A) by boosting histone H3 acetylation and lowering DNA methylation and H3K9 trimethylation. Importantly, the in vivo experiments further reveal that MS particles significantly enhance bone regeneration with improved angiogenesis in the critical-sized calvarial defect mouse model accompanied by upregulation of IL-17A in peripheral blood and the proportion of Th17 cells. This study suggests that modulation of the adaptive immune response of T lymphocytes by silicate-based biomaterials plays an important role for bone regeneration.
Collapse
Affiliation(s)
- Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Tingting Wu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Mei
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lu Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Ruomei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengmeng Shu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
5
|
Moazami S, Kharaziha M, Emadi R, Dinari M. Multifunctional Bioinspired Bredigite-Modified Adhesive for Bone Fracture Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6499-6513. [PMID: 36700731 DOI: 10.1021/acsami.2c20038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite recent advances in bone adhesives applied for full median sternotomy, the regeneration of bone defects has remained challenging since the healing process is hampered by poor adhesiveness, limited bioactivity, and lack of antibacterial functions. Bioinspired adhesives by marine organisms provide a novel concept to circumvent these problems. Herein, a dual cross-link strategy is employed in designing a multifaceted bioinspired adhesive consisting of a catechol amine-functionalized hyperbranched polymer (polydopamine-co-acrylate, PDA), bredigite (BR) nanoparticles, and Fe3+ ions. The hybrid adhesives exhibit strong adhesion to various substrates such as poly(methyl methacrylate), glass, bone, and skin tissues through synergy between irreversible covalent and reversible noncovalent cross-linking, depending on the BR content. Noticeably, the adhesion strength of hybrid adhesives containing 2 wt % BR nanoparticles to bone tissues is 2.3 ± 0.8 MPa, which is about 3 times higher than that of pure PDA adhesives. We also demonstrate that these hybrid adhesives not only are bioactive and accelerate in vitro bone-like apatite formation but also exhibit antibacterial properties against Staphylococcus aureus, depending on the BR concentration. Furthermore, the superior cellular responses in contact with hybrid adhesives, including improved human osteosarcoma MG63 cell spreading and osteogenic differentiation, are achieved owing to the appropriate ion release and flexibility of the cross-linked double-network adhesive. In summary, multifunctional hybrid PDA/BR adhesives with appreciable osteoconductive, mechanical, and antibacterial properties represent the potential applications for median sternotomy surgery as a bone tissue adhesive.
Collapse
Affiliation(s)
- Shima Moazami
- Department of Materials Engineering, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Rahmatallah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Iran
| |
Collapse
|
6
|
Wang J, Lei J, Hu Y, Meng L, Li W, Zhu F, Xie B, Wang Y, Yang C, Wu Q. Calcium Silicate Whiskers-Enforced Poly(Ether-Ether-Ketone) Composites with Improved Mechanical Properties and Biological Activities for Bearing Bone Reconstruction. Macromol Biosci 2022; 22:e2200321. [PMID: 36057971 DOI: 10.1002/mabi.202200321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Indexed: 01/15/2023]
Abstract
Poly (ether-ether-ketone) (PEEK) displays promising potential application in bone tissue repair and orthopedic surgery due to its good biocompatibility and chemical stability. However, the bio-inertness and poor mechanical strength of PEEK greatly limit its application in load-bearing bones. In this study, calcium silicate whiskers (CSws) are synthesized and then compounded with PEEK to fabricate the PEEK/CSw composites with excellent mechanical properties, biological activity. Compared with PEEK, the PEEK/CSw composites exhibited higher hydrophilicity and ability to deposit hydroxyapatite on the surface. CSws are evenly dispersed in the PEEK matrix at 10 wt% content and the mechanical strength of the PEEK/CSw composite is ≈96.9 ± 2.4 MPa, 136.3 ± 2.4 MPa, and 266.0 ± 3.2 MPa, corresponding to tensile strength, compressive strength, and bending strength, respectively, which is 20%, 18%, and 52% higher than that of pure PEEK. The composites improve the adhesion, proliferation, and osteogenic differentiation of BMSCs. Furthermore, PEEK/CSw composite remarkably improves bone formation and osteointegration, which has higher bone repair capacity than PEEK. These results demonstrate that the PEEK/CSw scaffolds display superior abilities to integrate with the host bone and promising potential in the field of load bearing bone repair.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Yanru Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lihui Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenchao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Fang Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Youfa Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
7
|
Mao M, Zhu S, Zhang L, Liu F, Kong L, Xue Y, Rotello VM, Han Y. An Extracellular Matrix-like Surface for Zn Alloy to Enhance Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43955-43964. [PMID: 36098563 DOI: 10.1021/acsami.2c12513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zn-based alloys are promising biodegradable implants for bone defect repair due to their good mechanical performance and degradability. However, local Zn2+ released from Zn-based implants can seriously affect adhering cell behaviors as well as new bone formation on implant surfaces. To address this issue, we have fabricated a bone-mimetic extracellular matrix (ECM)-like surface on Zn-1Ca implants using a hybrid process of anodization, hydrothermal treatment (HT), and fluorous-curing. The ECM-like surface consisted of Zn2SiO4 nanorods layered with collagen I (Col-I). The Zn2SiO4 nanorods were hemicrystallized and transformed by the reaction of Zn(OH)2 and SiO44- during the HT. The Zn2SiO4 nanorods effectively protected the substrate from corrosion; the Col-I layer decreased the degradation of Zn2SiO4 nanorods and further reduced Zn2+ release into the medium. This ECM-like surface generated a microenvironment with appropriate Zn2+ levels, nanorod-like topography, and Col-I. It significantly improved adhesion, proliferation, and differentiation of osteoblasts on implant surfaces and vascularization of endothelial cells in the extract medium. The in vivo results are in good agreement with in vitro tests, with the ECM-like surface significantly enhancing new bone formation and bone-implant contact compared to the bare implant surface. Overall, this bone-mimetic ECM-like material of Col-I layered Zn2SiO4 nanorods is a promising scaffold that promotes the bone regeneration of Zn-based implants.
Collapse
Affiliation(s)
- Mengting Mao
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengbo Zhu
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lan Zhang
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Fuwei Liu
- Fourth Military Medical University, Xi'an, 710038, China
| | - Liang Kong
- Fourth Military Medical University, Xi'an, 710038, China
| | - Yang Xue
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yong Han
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Liu X, Miao Y, Liang H, Diao J, Hao L, Shi Z, Zhao N, Wang Y. 3D-printed bioactive ceramic scaffolds with biomimetic micro/nano-HAp surfaces mediated cell fate and promoted bone augmentation of the bone–implant interface in vivo. Bioact Mater 2022; 12:120-132. [PMID: 35087968 PMCID: PMC8777208 DOI: 10.1016/j.bioactmat.2021.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Calcium phosphate bio-ceramics are osteo-conductive, but it remains a challenge to promote the induction of bone augmentation and capillary formation. The surface micro/nano-topography of materials can be recognized by cells and then the cell fate are mediated. Traditional regulation methods of carving surface structures on bio-ceramics employ mineral reagents and organic additives, which might introduce impurity phases and affect the biological results. In a previous study, a facile and novel method was utilized with ultrapure water as the unique reagent for hydrothermal treatment, and a uniform hydroxyapatite (HAp) surface layer was constructed on composite ceramics (β-TCP/CaSiO3) in situ. Further combined with 3D printing technology, biomimetic hierarchical structure scaffolds were fabricated with interconnected porous composite ceramic scaffolds as the architecture and micro/nano-rod hybrid HAp as the surface layer. The obtained HAp surface layer favoured cell adhesion, alleviated the cytotoxicity of precursor scaffolds, and upregulated the cellular differentiation of mBMSCs and gene expression of HUVECs in vitro. In vivo studies showed that capillary formation, bone augmentation and new bone matrix formation were upregulated after the HAp surface layer was obtained, and the results confirmed that the fabricated biomimetic hierarchical structure scaffold could be an effective candidate for bone regeneration. Simple and practical process to construct surface structure layer in situ with little impurities. Combined with the 3D printing technology to fabricate architecture of the pre-treated matrix. Study the angiogenesis and osteogenesis (for mesenchymal stem cells) separately. Improving tissue growth in vivo: capillary formation, bone-augmentation and new bone matrix formation.
Collapse
|
9
|
Nambiar J, Jana S, Nandi SK. Strategies for Enhancing Vascularization of Biomaterial-Based Scaffold in Bone Regeneration. CHEM REC 2022; 22:e202200008. [PMID: 35352873 DOI: 10.1002/tcr.202200008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/12/2022] [Indexed: 12/29/2022]
Abstract
Despite the recent advances in reconstructive orthopedics; fracture union is a challenge to bone regeneration. Concurrent angiogenesis is a complex process governed by events, delicately entwined with osteogenesis. However, poorly perfused scaffolds have lower success rates; necessitating the need for a better vascular component, which is important for the delivery of nutrients, oxygen, waste elimination, recruitment of cells for optimal bone repair. This review highlights the latest strategies to promote biomaterial-based scaffold vascularization by incorporation of cells, growth factors, inorganic ions, etc. into natural or synthetic polymers, ceramic materials, or composites of organic and inorganic compounds. Furthermore, it emphasizes structural modifications, biophysical stimuli, and natural molecules to fabricate scaffolds aiding the genesis of dense vascularization following their implantation to manifest a compatible regenerative microenvironment without graft rejection.
Collapse
Affiliation(s)
- Jasna Nambiar
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| |
Collapse
|
10
|
Chen X, Li J, Gu S, Wu Z, Wen F, Luo L, Li J, Chen Y. Fabrication of porous gehlenite coating on Al 2O 3-ZrO 2-SiC composite ceramics and its in vitro biological activities. J Biomater Appl 2022; 37:89-101. [PMID: 35321568 DOI: 10.1177/08853282221076226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Porous gehlenite coatings on Al2O3-ZrO2-SiC composite ceramics were prepared by electro-spraying technique combined with reactive sintering method. The influences of gehlenite coating on the mechanical property of the ceramics and biological activity of the coating were investigated. The results indicated that the gehlenite coating has limited influences on flexural strength and fracture toughness of the ceramics, and the coating has elastic modulus of 82 GPa, hardness of 2.2 GPa, and adhesive strength of 1512 mN, suggesting its potential application in load-bearing ceramic implants. Simulated body fluid soaking test, CCK-8 and alkaline phosphatase activity assay demonstrated that the porous gehlenite coating has strong mineralization ability, which promotes proliferation and differentiation of MC3T3-E1 cells. These excellent biological performances can be attributed to the synergistic effect of the porous surface of the coating and its release of Ca2+ and Si4+.
Collapse
Affiliation(s)
- Xianzhi Chen
- School of Materials Science & Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, 74629Hainan University, Haikou, China.,School of Life Sciences, 74629Hainan University, Haikou, China
| | - Jiaxin Li
- School of Materials Science & Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, 74629Hainan University, Haikou, China
| | - Shuidan Gu
- School of Materials Science & Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, 74629Hainan University, Haikou, China
| | - Zhiyu Wu
- School of Science, 74629Hainan University, Haikou, China
| | - Feng Wen
- School of Materials Science & Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, 74629Hainan University, Haikou, China
| | - Lijie Luo
- School of Materials Science & Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, 74629Hainan University, Haikou, China
| | - Jianbao Li
- School of Materials Science & Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, 74629Hainan University, Haikou, China
| | - Yongjun Chen
- School of Materials Science & Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, 74629Hainan University, Haikou, China
| |
Collapse
|
11
|
Jiang S, Wang X, Ma Y, Zhou Y, Liu L, Yu F, Fang B, Lin K, Xia L, Cai M. Synergistic Effect of Micro-Nano-Hybrid Surfaces and Sr Doping on the Osteogenic and Angiogenic Capacity of Hydroxyapatite Bioceramics Scaffolds. Int J Nanomedicine 2022; 17:783-797. [PMID: 35221685 PMCID: PMC8865905 DOI: 10.2147/ijn.s345357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
Background The synergistic effect of chemical element doping and surface modification is considered a novel way to regulate cell biological responses and improve the osteoinductive ability of biomaterials. Methods Hydroxyapatite (HAp) bioceramics with micro-nano-hybrid (a mixture of microrods and nanorods) surfaces and different strontium (Sr) doping contents of 2.5, 5, 10, and 20% (Srx-mnHAp, x: 2.5, 5, 10 and 20%) were prepared via a hydrothermal transformation method. The effect of Srx-mnHAp on osteogenesis and angiogenesis of bone marrow stromal cells (BMSCs) was evaluated in vitro, and the bioceramics scaffolds were further implanted into rat calvarial defects for the observation of bone regeneration in vivo. Results HAp bioceramics with micro-nano-hybrid surfaces (mnHAp) could facilitate cell spreading, proliferation ability, ALP activity, and gene expression of osteogenic and angiogenic factors, including COL1, BSP, BMP-2, OPN, VEGF, and ANG-1. More importantly, Srx-mnHAp (x: 2.5, 5, 10 and 20%) further promoted cellular osteogenic activity, and Sr10-mnHAp possessed the best stimulatory effect. The results of calvarial defects revealed that Sr10-mnHAp could promote more bone and blood vessel regeneration, with mnHAp and HAp bioceramics (dense and flat surfaces) as compared. Conclusion The present study suggests that HAp bioceramics with micro-nano-hybrid surface and Sr doping had synergistic promotion effects on bone regeneration, which can be a promising material for bone defect repair.
Collapse
Affiliation(s)
- Shengjie Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People’s Republic of China
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, People’s Republic of China
| | - Yuhan Ma
- Department of Stomatology, Medical college of Soochow University, Jiangsu, People’s Republic of China
| | - Yuning Zhou
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People’s Republic of China
| | - Lu Liu
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Fei Yu
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People’s Republic of China
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Lunguo Xia, Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People’s Republic of China, Tel +86 13761955106, Fax +86-21-63136856, Email
| | - Ming Cai
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People’s Republic of China
- Ming Cai, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, People’s Republic of China, Tel +86 13918490900, Fax +86-21-63136856, Email
| |
Collapse
|
12
|
Li L, Li J, Zou Q, Zuo Y, Lin L, Cai B, Li Y. Lotus root and osteons-inspired channel structural scaffold mediate cell biomineralization and vascularized bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2021; 110:1178-1191. [PMID: 34905286 DOI: 10.1002/jbm.b.34991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/05/2022]
Abstract
The interconnectivity of porous scaffold is vital for cell and tissue infiltration, and vascular networks formation, determining the successful bone regeneration in large bone defects. Here, inspired by the lotus-root and Haversian system of natural bone, a nano-hydroxyapatite/polyurethane (n-HA/PU) lotus root-like scaffold inlaid with micro holes on the wall of the adjacent channel was utilized to mediate cell biomineralization and vascularized bone tissue regeneration. Such a particular lotus-type structure remarkably promoted cells to proliferate and infiltrate into the center of the entire scaffold, serving as a clue to account for regulating cell alignment and differentiation physically. In vitro studies suggested that apatite accumulated dramatically on the channel wall in the lotus-type scaffold, probably promoting specific osteogenic differentiation of cells by the orientated channels, even in the absence of osteogenic factors. In vivo creation of critical bone defects (15-mm segments) was done in the radius of rabbits and implanted with the scaffold of different geometry to assess the structural parameters on the efficacy of new bone regeneration. The more extensive positive staining of BMP-2, more considerable amount of infiltrated capillary, more robust new bone formation, particularly the biomechanical strength of lotus-type scaffold group could reach the level of the control group without surgery, indicating that the lotus-type scaffold was more favorable for new bone tissue formation along tube-like channels. These results highlighted the potential of this biomimetic scaffold for cell and tissue infiltration and thus repair large bony defects.
Collapse
Affiliation(s)
- Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Lili Lin
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Bin Cai
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Li K, Lu X, Liu S, Wu X, Xie Y, Zheng X. Boron-incorporated micro/nano-topographical calcium silicate coating dictates osteo/angio-genesis and inflammatory response toward enhanced osseointegration. Biol Trace Elem Res 2021; 199:3801-3816. [PMID: 33405083 DOI: 10.1007/s12011-020-02517-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Orthopedic implant coatings with optimal surface features to achieve favorable osteo/angio-genesis and inflammatory response would be of great importance. However, to date, few coatings are capable of fully satisfying these requirements. In this work, to take advantage of the structural complexity of micro/nano-topography and benefits of biological trace elements, two types of boron-containing nanostructures (nanoflakes and nanolamellars) were introduced onto plasma-sprayed calcium silicate (F-BCS and L-BCS) coatings via hydrothermal treatment. The C-CS coating using deionized water as hydrothermal medium served as control. Boron-incorporated CS coating stimulated osteoblastic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Specifically, the combination of β1 integrin-vinculin-mediated cell spreading and activation of bone morphogenetic protein signaling pathway acted synergistically to cause significant upregulation of runt-related transcription factor 2 (RUNX2) protein and Runx2 gene expression in BMSCs on the F-BCS coating surface, which induced the transcription of downstream osteogenic differentiation marker genes. F-BCS coating allowed specific boron ion release, which favored angiogenesis as evidenced by the enhanced migration and tube formation of human umbilical vein endothelial cells in the coating extract. Boron-incorporated coatings significantly suppressed the expression of toll-like receptor adaptor genes in RAW264.7 macrophages and subsequently the degradation of nuclear factor-κB inhibitor α, accompanied by the inactivation of the downstream pro-inflammatory genes. In vivo experiments confirmed that F-BCS-coated Ti implant possessed enhanced osseointegration compared with L-BCS- and C-CS-coated implants. These data highlighted the synergistic effect of specific nanotopography and boron release from orthopedic implant coating on improvement of osseointegration.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiang Lu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shiwei Liu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaodong Wu
- Department of Orthopedic, Changzheng Hospital, Naval Medical University, Shanghai, People's Republic of China.
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med 2021; 6:e10206. [PMID: 34027093 PMCID: PMC8126827 DOI: 10.1002/btm2.10206] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
In clinical terms, bone grafting currently involves the application of autogenous, allogeneic, or xenogeneic bone grafts, as well as natural or artificially synthesized materials, such as polymers, bioceramics, and other composites. Many of these are associated with limitations. The ideal scaffold for bone tissue engineering should provide mechanical support while promoting osteogenesis, osteoconduction, and even osteoinduction. There are various structural complications and engineering difficulties to be considered. Here, we describe the biomimetic possibilities of the modification of natural or synthetic materials through physical and chemical design to facilitate bone tissue repair. This review summarizes recent progresses in the strategies for constructing biomimetic scaffolds, including ion-functionalized scaffolds, decellularized extracellular matrix scaffolds, and micro- and nano-scale biomimetic scaffold structures, as well as reactive scaffolds induced by physical factors, and other acellular scaffolds. The fabrication techniques for these scaffolds, along with current strategies in clinical bone repair, are described. The developments in each category are discussed in terms of the connection between the scaffold materials and tissue repair, as well as the interactions with endogenous cells. As the advances in bone tissue engineering move toward application in the clinical setting, the demonstration of the therapeutic efficacy of these novel scaffold designs is critical.
Collapse
Affiliation(s)
- Sijing Jiang
- Department of Plastic SurgeryFirst Affiliated Hospital of Anhui Medical University, Anhui Medical UniversityHefeiChina
| | - Mohan Wang
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| | - Jiacai He
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| |
Collapse
|
15
|
Liu L, Mu H, Pang Y. Caffeic acid treatment augments the cell proliferation, differentiation, and calcium mineralization in the human osteoblast-like MG-63 cells. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_186_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Wu L, Zhou C, Zhang B, Lei H, Wang W, Pu X, Liu L, Liang J, Fan Y, Zhang X. Construction of Biomimetic Natural Wood Hierarchical Porous-Structure Bioceramic with Micro/Nanowhisker Coating to Modulate Cellular Behavior and Osteoinductive Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48395-48407. [PMID: 33064436 DOI: 10.1021/acsami.0c15205] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Scaffolds with a biomimetic hierarchy micro/nanoscale pores play an important role in bone tissue regeneration. In this study, multilevel porous calcium phosphate (CaP) bioceramic orthopedic implants were constructed to mimic the micro/nanostructural hierarchy in natural wood. The biomimetic hierarchical porous scaffolds were fabricated by combining three-dimensional (3D) printing technology and hydrothermal treatment. The first-level macropores (∼100-600 μm) for promoting bone tissue ingrowth were precisely designed using a set of 3D printing parameters. The second-level micro/nanoscale pores (∼100-10,000 nm) in the scaffolds were obtained by hydrothermal treatment to promote nutrient/metabolite transportation. Micro- and nanoscale-sized pores in the scaffolds were recognized as in situ formation of whiskers, where the shape, diameter, and length of whiskers were modulated by adjusting the components of calcium phosphate ceramics and hydrothermal treatment parameters. These biomimetic natural wood-like hierarchical structured scaffolds demonstrated unique physical and biological properties. Hydrophilicity and the protein adsorption rate were characterized in these scaffolds. In vitro studies have identified micro/nanowhisker coating as potent modulators of cellular behavior through the onset of focal adhesion formation. In addition, histological results indicate that biomimetic scaffolds with porous natural wood hierarchical pores exhibited good osteoinductive activity. In conclusion, these findings combined suggested that micro/nanowhisker coating is a critical factor to modulate cellular behavior and osteoinductive activity.
Collapse
Affiliation(s)
- Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenzhao Wang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaobing Pu
- Department of Orthopedics Medical Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
17
|
Ding Q, Cui J, Shen H, He C, Wang X, Shen SGF, Lin K. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1669. [PMID: 33090719 DOI: 10.1002/wnan.1669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Using bioactive nanomaterials in clinical treatment has been widely aroused. Nanomaterials provide substantial improvements in the prevention and treatment of oral and maxillofacial diseases. This review aims to discuss new progresses in nanomaterials applied to oral and maxillofacial tissue regeneration and disease treatment, focusing on the use of nanomaterials in improving the quality of oral and maxillofacial healthcare, and discuss the perspectives of research in this arena. Details are provided on the tissue regeneration, wound healing, angiogenesis, remineralization, antitumor, and antibacterial regulation properties of nanomaterials including polymers, micelles, dendrimers, liposomes, nanocapsules, nanoparticles and nanostructured scaffolds, etc. Clinical applications of nanomaterials as nanocomposites, dental implants, mouthwashes, biomimetic dental materials, and factors that may interact with nanomaterials behaviors and bioactivities in oral cavity are addressed as well. In the last section, the clinical safety concerns of their usage as dental materials are updated, and the key knowledge gaps for future research with some recommendation are discussed. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qinfeng Ding
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hangqi Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
18
|
Kheradmandfard M, Mahdavi K, Zargar Kharazi A, Kashani-Bozorg SF, Kim DE. In vitro study of a novel multi-substituted hydroxyapatite nanopowder synthesized by an ultra-fast, efficient and green microwave-assisted method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111310. [PMID: 32919671 DOI: 10.1016/j.msec.2020.111310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
In order to improve the biological activity of hydroxyapatite (HA), a multi-substituted HA (SHA) nanopowder with the chemical composition of Ca9.5Mg0.25Sr0.25(PO4)5.5(SiO4)0.5(OH)1.2F0.8 was synthesized using the microwave-assisted method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) revealed that all ions were substituted in the HA crystal lattice. The HA and SHA nanoparticles had a semi-spherical morphology with the average size of 90 and 80 nm, respectively. In-vitro bioactivity assessments showed that after the 28-day immersion of the samples in the simulated body fluid, the morphology of the precipitated apatites on the surface of the HA sample still consisted of spherical particles with a cauliflower-like structure. However, in the SHA sample, the morphology of the precipitated apatites was changed to a nanorod-like one similar to the bone-like apatite, which may be attributed the presence of Sr in the precipitated apatites. The results showed that the release of the substituted ions not only had no adverse effect on the cell viability and cell attachment, but also enhanced the alkaline phosphatase activity of MG63 osteoblast like cells in the SHA group, as compared to the HA and control groups. The results indicated that the simultaneous substitution of Si, Mg, Sr, and F in HA nanoparticles could effectively promote bioactivity, cell proliferation and differentiation. This novel HA composition could be, therefore, well used for implant coating, bone tissue engineering and other orthopedic applications.
Collapse
Affiliation(s)
- Mehdi Kheradmandfard
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, South Korea
| | - Kobra Mahdavi
- Biomaterials Nanotechnology and Tissue Engineering faculty, School of Advanced technologies in medicine, Isfahan university of medical sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Biomaterials Nanotechnology and Tissue Engineering faculty, School of Advanced technologies in medicine, Isfahan university of medical sciences, Isfahan, Iran.
| | | | - Dae-Eun Kim
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
19
|
Xu Y, Liu W, Zhang G, Li Z, Hu H, Wang C, Zeng X, Zhao S, Zhang Y, Ren T. Friction stability and cellular behaviors on laser textured Ti-6Al-4V alloy implants with bioinspired micro-overlapping structures. J Mech Behav Biomed Mater 2020; 109:103823. [PMID: 32543395 DOI: 10.1016/j.jmbbm.2020.103823] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022]
Abstract
The grain structure and surface morphology of bio-implants act as a pivotal part in altering cell behavior. Titanium alloy bone screws, as common implants, are prone to screws loosening and complications threat in the physiological environment due to their inferior anti-wear and surface inertia. Manufacturing bone screws with high wear resistance and ideal biocompatibility has always been a challenge. In this study, a series of overlapping morphologies inspired by the hierarchical structure of fish scales and micro bulges of shrimp were structured on Ti-6Al-4V implant by laser texturing. The results indicate that the textured patterns could improve cell attachment, proliferation, and osteogenic differentiation. The short-term response of human bone marrow-derived mesenchymal stem cells (hBMSCs) on the textured surface are more sensitive to the microstructure than the surface roughness, wettability, grain size and surface chemical elements of the textured surfaces. More importantly, the friction-increasing and friction-reducing type overlapping structures exhibit excellent friction stability at different stages of modified simulated body fluid (m-SBF) soaking. The overlapping structure (Micro-smooth stacked ring: MSSR) is more beneficial to promote the formation of apatite. Deposited spherical-like apatite particles can act as a "lubricant" on the MSSR surface during the friction process to alleviate the adhesion wear of the surface. Meanwhile, apatite particles participate in the formation of friction film, which plays an effective role in reducing friction and antiwear in corrosion solution (m-SBF) for a long time. These features show that the combination of soaking treatment in m-SBF solution with laser-textured MSSR structure is expected to be an efficient and environmentally friendly strategy to prolong the service life of bone screws and reducing the complications of mildly osteoporotic implants.
Collapse
Affiliation(s)
- Yong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Gangqiang Zhang
- College of Textile & Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Zhipeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongxing Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chenchen Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangqiong Zeng
- Advanced Lubricating Materials Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201404, China
| | - Shichang Zhao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Yadong Zhang
- Department of Orthopedics, Shanghai Fengxian Central Hospital, South Campus of Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 201400, China.
| | - Tianhui Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
20
|
Li R, Wei Y, Gu L, Qin Y, Li D. Sol-gel-assisted micro-arc oxidation synthesis and characterization of a hierarchically rough structured Ta-Sr coating for biomaterials. RSC Adv 2020; 10:20020-20027. [PMID: 35520438 PMCID: PMC9054214 DOI: 10.1039/d0ra01079k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Tantalum (Ta) is an element with high chemical stability and ductility that is used in orthopedic biomaterials. When utilized, it can produce a bioactive surface and enhance cell-material interactions, but currently, there exist scarce effective methods to introduce the Ta element onto the surface of implants. This work reported a sol-gel-assisted approach combined with micro-arc oxidation (MAO) to introduce Ta onto the surface of the titanium (TC4) substrate. Specifically, this technique produced a substrate with a hierarchically rough structured topography and introduced strontium ions into the film. The films were uniform and continuous with numerous crater-like micropores. Compared with the TC4 sample (196 ± 35 nm), the roughness of Ta (734 ± 51 nm) and Ta-Sr (728 ± 85 nm) films was significantly higher, and both films (Ta and Ta-Sr) showed increased hydrophilicity when compared with TC4, promoting cell attachment. Additionally, the in vitro experiments indicated that Ta and Ta-Sr films have the potential to enhance the recruitment of cells in the initial culture stages, and improve cell proliferation. Overall, this work demonstrated that the application of Ta and Ta-Sr films to orthopedic implants has the potential to increase the lifetime of the implants. Furthermore, this study also describes an innovative strategy to incorporate Ta into implant films.
Collapse
Affiliation(s)
- Ruiyan Li
- Department of Orthopedics, The Second Hospital of Jilin University Changchun 130041 China
| | - Yongjie Wei
- Key Laboratory of Automobile Materials of MOE, Department of Materials Science and Engineering, Jilin University Changchun 130012 China
| | - Long Gu
- Key Laboratory of Automobile Materials of MOE, Department of Materials Science and Engineering, Jilin University Changchun 130012 China
| | - Yanguo Qin
- Department of Orthopedics, The Second Hospital of Jilin University Changchun 130041 China
| | - Dongdong Li
- Key Laboratory of Automobile Materials of MOE, Department of Materials Science and Engineering, Jilin University Changchun 130012 China
| |
Collapse
|
21
|
Brunello G, Panda S, Schiavon L, Sivolella S, Biasetto L, Del Fabbro M. The Impact of Bioceramic Scaffolds on Bone Regeneration in Preclinical In Vivo Studies: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1500. [PMID: 32218290 PMCID: PMC7177381 DOI: 10.3390/ma13071500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Bioceramic scaffolds are appealing for alveolar bone regeneration, because they are emerging as promising alternatives to autogenous and heterogenous bone grafts. The aim of this systematic review is to answer to the focal question: in critical-sized bone defects in experimental animal models, does the use of a bioceramic scaffolds improve new bone formation, compared with leaving the empty defect without grafting materials or using autogenous bone or deproteinized bovine-derived bone substitutes? Electronic databases were searched using specific search terms. A hand search was also undertaken. Only randomized and controlled studies in the English language, published in peer-reviewed journals between 2013 and 2018, using critical-sized bone defect models in non-medically compromised animals, were considered. Risk of bias assessment was performed using the SYRCLE tool. A meta-analysis was planned to synthesize the evidence, if possible. Thirteen studies reporting on small animal models (six studies on rats and seven on rabbits) were included. The calvarial bone defect was the most common experimental site. The empty defect was used as the only control in all studies except one. In all studies the bioceramic materials demonstrated a trend for better outcomes compared to an empty control. Due to heterogeneity in protocols and outcomes among the included studies, no meta-analysis could be performed. Bioceramics can be considered promising grafting materials, though further evidence is needed.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza Italy; (G.B.); (L.B.)
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Sourav Panda
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Commenda 10, 20122 Milan, Italy;
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha O Anusandhan University, Bhubaneswar, 751003 Odisha, India
| | - Lucia Schiavon
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Stefano Sivolella
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Lisa Biasetto
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza Italy; (G.B.); (L.B.)
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Commenda 10, 20122 Milan, Italy;
- Dental Clinic, I.R.C.C.S. Orthopedic Institute Galeazzi, Via Galeazzi 4, 20161 Milan, Italy
| |
Collapse
|
22
|
Wei Y, Liu L, Gao H, Shi X, Wang Y. In Situ Formation of Hexagon-like Column Array Hydroxyapatite on 3D-Plotted Hydroxyapatite Scaffolds by Hydrothermal Method and Its Effect on Osteogenic Differentiation. ACS APPLIED BIO MATERIALS 2020; 3:1753-1760. [PMID: 35021664 DOI: 10.1021/acsabm.0c00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the preparation of bioactive bone graft materials, surface topography is essential for the ultimate stem cell response. However, the tunable fabrication of surface topography for 3D bioceramic scaffolds is still a technical problem because of the low processability and high brittleness of bioceramics. In this study, an evenly spaced hexagon-like column array surface was fabricated in situ via a hydrothermal method on 3D plotted hydroxyapatite scaffolds. Compared with the Control scaffolds, hydroxyapatite scaffolds with a hexagon-like column array topography possessed a higher crystal orientation degree and specific surface area, which further enhanced fibronectin adsorption. The array topography on the hydroxyapatite scaffolds also showed good biocompatibility with human adipose-derived stem cells (ADSCs). More importantly, the Array scaffolds significantly promoted the expression levels of osteogenic-related genes and proteins compared with the Control scaffolds. The results suggested that the construction of hexagon-like column array topography might be critical for the design of bone regeneration scaffolds with spontaneous stimulation capacity.
Collapse
Affiliation(s)
- Yingqi Wei
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lei Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Huichang Gao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xuetao Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
23
|
Casarrubios L, Gómez-Cerezo N, Sánchez-Salcedo S, Feito MJ, Serrano MC, Saiz-Pardo M, Ortega L, de Pablo D, Díaz-Güemes I, Fernández-Tomé B, Enciso S, Sánchez-Margallo FM, Portolés MT, Arcos D, Vallet-Regí M. Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep. Acta Biomater 2020; 101:544-553. [PMID: 31678741 DOI: 10.1016/j.actbio.2019.10.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 01/16/2023]
Abstract
Silicon-substituted hydroxyapatite (SiHA) macroporous scaffolds have been prepared by robocasting. In order to optimize their bone regeneration properties, we have manufactured these scaffolds presenting different microstructures: nanocrystalline and crystalline. Moreover, their surfaces have been decorated with vascular endothelial growth factor (VEGF) to evaluate the potential coupling between vascularization and bone regeneration. In vitro cell culture tests evidence that nanocrystalline SiHA hinders pre-osteblast proliferation, whereas the presence of VEGF enhances the biological functions of both endothelial cells and pre-osteoblasts. The bone regeneration capability has been evaluated using an osteoporotic sheep model. In vivo observations strongly correlate with in vitro cell culture tests. Those scaffolds made of nanocrystalline SiHA were colonized by fibrous tissue, promoted inflammatory response and fostered osteoclast recruitment. These observations discard nanocystalline SiHA as a suitable material for bone regeneration purposes. On the contrary, those scaffolds made of crystalline SiHA and decorated with VEGF exhibited bone regeneration properties, with high ossification degree, thicker trabeculae and higher presence of osteoblasts and blood vessels. Considering these results, macroporous scaffolds made of SiHA and decorated with VEGF are suitable bone grafts for regeneration purposes, even in adverse pathological scenarios such as osteoporosis. STATEMENT OF SIGNIFICANCE: For the first time, the in vivo behavior of scaffolds made of silicon substituted hydroxyapatites (SiHA) has been evaluated under osteoporosis conditions. In order to optimize the bone regeneration properties of these bioceramics, 3D macroporous scaffolds have been manufactured by robocasting and implanted in osteoporotic sheep. Our experimental design shed light on the important issue of the biological response of nano-sized bioceramics vs highly crystalline bioceramics, as well as on the importance of coupling vascularization and bone growth processes by decorating SiHA scaffolds with vascular endothelial growth factor.
Collapse
Affiliation(s)
- L Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid 28040, Spain
| | - N Gómez-Cerezo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - S Sánchez-Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - M J Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid 28040, Spain
| | - M C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - M Saiz-Pardo
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - L Ortega
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - D de Pablo
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - I Díaz-Güemes
- Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
| | | | - S Enciso
- Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
| | | | - M T Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid 28040, Spain.
| | - D Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - M Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
24
|
Li K, Xue Y, Zhou J, Han J, Zhang L, Han Y. Silanized NaCa2HSi3O9 nanorods with a reduced pH increase on Ti for improving osteogenesis and angiogenesis in vitro. J Mater Chem B 2020; 8:691-702. [DOI: 10.1039/c9tb02321f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
NaCa2HSi3O9 nanorods with silane layers allow efficient Ca and Si release and controlled pH increase, and can enhance osteogenesis and angiogenesis on the Ti implant surface.
Collapse
Affiliation(s)
- Kai Li
- State-Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Yang Xue
- State-Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology
- Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center
- Baoji University of Arts and Sciences
- Baoji
- China
| | - Jing Han
- School of Public Health
- Health Science Center
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Lan Zhang
- State-Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Yong Han
- State-Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
25
|
Li K, Dai F, Yan T, Xue Y, Zhang L, Han Y. Magnetic Silicium Hydroxyapatite Nanorods for Enhancing Osteoblast Response in Vitro and Biointegration in Vivo. ACS Biomater Sci Eng 2019; 5:2208-2221. [PMID: 33405773 DOI: 10.1021/acsbiomaterials.9b00073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteoblast behavior playing an important role in the biointegration of the Ti implant with host bone in vivo can be regulated by surface properties and magnetic field. In order to endow the Ti surface with good osteogenesis activity, Si monosubstituted and Fe and Si cosubstituted hydroxyapatite (HAp) nanorods were fabricated on microporous TiO2 by microarc oxidation (MAO) followed with hydrothermal treatment (HT). The surface properties including microstructure, microroughness, hydrophilicity, ion release, magnetic property, cytocompatibility, and biointegration of substituted HAp nanorods were observed and evaluated, together with pure HAp nanorods and microarc oxidated (MAOed) TiO2 as controls. After being doped with Fe, MAOed TiO2 has no changes in phase composition and microroughness, whereas it displays weakly ferromagnetic behavior and can enhance osteoblast differentiation in vitro and formation of new bone in vivo, compared with the undoped one. The substituted HAp nanorods adhere firmly to TiO2 and have almost the same wettability and microroughness but additional Si, Fe, and/or Ca released into the medium, compared with pure HAp nanorods. Moreover, the cosubstituted HAp has a small ferromagnetic signal, while its saturation magnetization value is less than that of the MAOed doped with Fe. Compared to pure HA nanorods, the substituted HAp nanorods not only improve cell proliferation and differentiation in vitro, but also enhance the ability of bone integration in vivo, especially for the cosubstituted one, which should be ascribed to the combined effect of microstructure, magnetic property, and released ions.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Fang Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Ting Yan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yang Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Lan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
26
|
Xia L, Ma W, Zhou Y, Gui Z, Yao A, Wang D, Takemura A, Uemura M, Lin K, Xu Y. Stimulatory Effects of Boron Containing Bioactive Glass on Osteogenesis and Angiogenesis of Polycaprolactone: In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8961409. [PMID: 31011582 PMCID: PMC6442456 DOI: 10.1155/2019/8961409] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/25/2018] [Accepted: 02/03/2019] [Indexed: 12/14/2022]
Abstract
Polycaprolactone (PCL) has attracted great attention for bone regeneration attributed to its cost-efficiency, high toughness, and good processability. However, the relatively low elastic modulus, hydrophobic nature, and insufficient bioactivity of pure PCL limited its wider application for bone regeneration. In the present study, the effects of the addition of boron containing bioactive glass (B-BG) materials on the mechanical properties and biological performance of PCL polymer were investigated with different B-BG contents (0, 10, 20, 30, and 40 wt.%), in order to evaluate the potential applications of B-BG/PCL composites for bone regeneration. The results showed that the B-BG/PCL composites possess better tensile strength, human neutral pH value, and fast degradation as compared to pure PCL polymers. Moreover, the incorporation of B-BG could enhance proliferation, osteogenic differentiation, and angiogenic factor expression for rat bone marrow stromal cells (rBMSCs) as compared to pure PCL polymers. Importantly, the B-BG also promoted the angiogenic differentiation for human umbilical vein endothelial cells (HUVECs). These enhanced effects had a concentration dependence of B-BG content, while 30 wt.% B-BG/PCL composites achieved the greatest stimulatory effect. Therefore the 30 wt.% B-BG/PCL composites have potential applications in bone reconstruction fields.
Collapse
Affiliation(s)
- Lunguo Xia
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| | - Wudi Ma
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| | - Yuning Zhou
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| | - Zhipeng Gui
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| | - Aihua Yao
- Key Laboratory of the Advanced Civil Engineering Materials, Tongji University, Ministration of Education, China
| | - Deping Wang
- Key Laboratory of the Advanced Civil Engineering Materials, Tongji University, Ministration of Education, China
| | | | - Mamoru Uemura
- Department of Anatomy, Osaka Dental University, Osaka, Japan
| | - Kailin Lin
- Department of Oral and Craniomaxillofacial Science, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| | - Yuanjin Xu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| |
Collapse
|
27
|
Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite. Acta Biomater 2019; 83:425-434. [PMID: 30342285 DOI: 10.1016/j.actbio.2018.10.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 01/22/2023]
Abstract
The combination of kappa-carrageenan (κ-CG) and hydroxyapatite (HA) to generate a bone substitute material has been underexplored to date. Carrageenans (CGs) have remarkable characteristics such as biocompatibility, hydrophilicity, and structural similarities with natural glycosaminoglycans (GAGs), and they have demonstrated the ability to stimulate cellular adhesion and proliferation. Hydroxyapatite nanoparticles have been one of the most investigated materials for bone regeneration due to their excellent biocompatibility, bioactivity and osteoconductivity. In particular, this study presents an approach for the preparation of new bioactive composites of κ-CG/nHA for numerous bone regeneration applications. We performed a set of in vitro experiments to evaluate the influence of the bone substitutes on human osteoblasts. Cell culture studies indicated that all samples tested were cytocompatible. Relative to control substrates, cellular attachment and proliferation were better on all the scaffold surfaces that were tested. The S2 and S3 samples, those permeated by 1.5 and 2.5 wt% of CG, respectively, exhibited an enhancement in cell spreading capacity compared to the S1 test materials which were comprised of 1 wt% of CG. Excellent osteoblast viability and adhesion were observed for each of the tested materials. Additionally, the bone substitutes developed for this study presented a distinct osteoconductive environment. Data supporting this claim were derived from alkaline phosphatase (ALP) and calcium deposition analyses, which indicated that, compared to the control species, ALP expression and calcium deposition were both improved on test κ-CG/nHA surfaces. In summary, the injectable bone substitute developed here demonstrated great potential for numerous bone regeneration applications, and thus, should be studied further. STATEMENT OF SIGNIFICANCE: The novelty of this work lies in the determination of the in vitro cytocompatibility behavior of carrageenan and hydroxyapatite composite materials used as injectable bone substitutes. This injectable biomaterial can fill in geometric complex defects, and it displays bioactivity as well as high bone regeneration capacity. In this study, we evaluated the behaviors of osteoblast cells in contact with the scaffolds, including cellular adhesion and proliferation, cellular metabolism, and mineralization on the fabricated injectable bone substitutes. The results show than the carrageenan and hydroxyapatite substitutes provided a biomaterial with a great capacity for promoting cellular growth, adhesion, and proliferation, as well as contributing an osteoinductive environment for osteoblast differentiation and osteogenesis.
Collapse
|
28
|
Song P, Hu C, Pei X, Sun J, Sun H, Wu L, Jiang Q, Fan H, Yang B, Zhou C, Fan Y, Zhang X. Dual modulation of crystallinity and macro-/microstructures of 3D printed porous titanium implants to enhance stability and osseointegration. J Mater Chem B 2019; 7:2865-2877. [PMID: 32255089 DOI: 10.1039/c9tb00093c] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The macro architecture and micro surface topological morphology of implants play essential roles in bone tissue regeneration.
Collapse
|
29
|
Zhang X, Li H, Liu J, Wang H, Sun W, Lin K, Wang X, Shen SG. Amorphous carbon modification on implant surface: a general strategy to enhance osteogenic differentiation for diverse biomaterials via FAK/ERK1/2 signaling pathways. J Mater Chem B 2019; 7:2518-2533. [DOI: 10.1039/c8tb02850h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amorphous carbon coatings enhance osteogenic differentiation via FAK/ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Oral and Cranio-Maxillofacial Science
- Shanghai Ninth People's Hospital
- College of Stomatology
- Shanghai Jiao Tong University School of Medicine
- National Clinical Research Center for Oral Diseases
| | - Haotian Li
- Department of Spine Surgery
- Tongji Hospital
- Tongji University School of Medicine
- Shanghai 200065
- China
| | - Jiaqiang Liu
- Department of Oral and Cranio-Maxillofacial Science
- Shanghai Ninth People's Hospital
- College of Stomatology
- Shanghai Jiao Tong University School of Medicine
- National Clinical Research Center for Oral Diseases
| | - Hui Wang
- School & Hospital of Stomatology
- Tongji University
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Shanghai 200072
- China
| | - Wenjun Sun
- School & Hospital of Stomatology
- Tongji University
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Shanghai 200072
- China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Science
- Shanghai Ninth People's Hospital
- College of Stomatology
- Shanghai Jiao Tong University School of Medicine
- National Clinical Research Center for Oral Diseases
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Science
- Shanghai Ninth People's Hospital
- College of Stomatology
- Shanghai Jiao Tong University School of Medicine
- National Clinical Research Center for Oral Diseases
| | - Steve Guofang Shen
- Department of Oral and Cranio-Maxillofacial Science
- Shanghai Ninth People's Hospital
- College of Stomatology
- Shanghai Jiao Tong University School of Medicine
- National Clinical Research Center for Oral Diseases
| |
Collapse
|
30
|
Zhou R, Han Y, Cao J, Li M, Jin G, Du Y, Luo H, Yang Y, Zhang L, Su B. Enhanced Osseointegration of Hierarchically Structured Ti Implant with Electrically Bioactive SnO 2-TiO 2 Bilayered Surface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30191-30200. [PMID: 30130089 DOI: 10.1021/acsami.8b10928] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The poor osseointegration of Ti implant significantly compromise its application in load-bearing bone repair and replacement. Electrically bioactive coating inspirited from heterojunction on Ti implant can benefit osseointegration but cannot avoid the stress shielding effect between bone and implant. To resolve this conflict, hierarchically structured Ti implant with electrically bioactive SnO2-TiO2 bilayered surface has been developed to enhance osseointegration. Benefiting from the electric cue offered by the built-in electrical field of SnO2-TiO2 heterojunction and the topographic cue provided by the hierarchical surface structure to bone regeneration, the osteoblastic function of basic multicellular units around the implant is significantly improved. Because the individual TiO2 or SnO2 coating with uniform surface exhibits no electrical bioactivity, the effects of electric and topographic cues to osseointegration have been decoupled via the analysis of in vivo performance for the placed Ti implant with different surfaces. The developed Ti implant shows significantly improved osseointegration with excellent bone-implant contact, improved mineralization of extracellular matrix, and increased push-out force. These results suggest that the synergistic strategy of combing electrical bioactivity with hierarchical surface structure provides a new platform for developing advanced endosseous implants.
Collapse
Affiliation(s)
- Rui Zhou
- Bristol Dental School , University of Bristol , Bristol BS1 2LY , U.K
| | | | - Jianyun Cao
- School of Materials , University of Manchester , Manchester M13 9PL , U.K
| | - Ming Li
- Honghui Hospital , Xi'an Jiaotong University College of Medicine , Xi'an 710054 , P. R. China
| | | | - Yuzhou Du
- School of Materials Science and Engineering , Xi'an University of Technology , Xi'an 710048 , P. R. China
| | | | | | | | - Bo Su
- Bristol Dental School , University of Bristol , Bristol BS1 2LY , U.K
| |
Collapse
|
31
|
Xiao D, Yang F, Zhao Q, Chen S, Shi F, Xiang X, Deng L, Sun X, Weng J, Feng G. Fabrication of a Cu/Zn co-incorporated calcium phosphate scaffold-derived GDF-5 sustained release system with enhanced angiogenesis and osteogenesis properties. RSC Adv 2018; 8:29526-29534. [PMID: 35547329 PMCID: PMC9085280 DOI: 10.1039/c8ra05441j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/15/2018] [Indexed: 01/31/2023] Open
Abstract
Synthetic scaffolds with multifunctional properties, including angiogenesis and osteogenesis capacities, play an essential role in accelerating bone regeneration. In this study, various concentrations of Cu/Zn ions were incorporated into biphasic calcium phosphate (BCP) scaffolds, and then growth differentiation factor-5 (GDF-5)-loaded poly(lactide-co-glycolide) (PLGA) microspheres were attached onto the ion-doped scaffold. The results demonstrated that with increasing concentration of dopants, the scaffold surface gradually changed from smooth grain crystalline to rough microparticles, and further to a nanoflake film. Additionally, the mass ratio of β-tricalcium phosphate/hydroxyapatite increased with the dopant concentration. Furthermore, GDF-5-loaded PLGA microspheres attached onto the BCP scaffold surface exhibited a sustained release. In vitro co-culture of bone mesenchymal stem cells and vascular endothelial cells showed that the addition of Cu/Zn ions and GDF-5 in the BCP scaffold not only accelerated cell proliferation, but also promoted cell differentiation by enhancing the alkaline phosphatase activity and bone-related gene expression. Moreover, the vascular endothelial growth factor secretion level increased with the dopant concentration, and attained a maximum when GDF-5 was added into the ions-doped scaffold. These findings indicated that BCP scaffold co-doped with Cu/Zn ions exhibited a combined effect of both metal ions, including angiogenic and osteogenic capacities. Moreover, GDF-5 addition further enhanced both the angiogenic and osteogenic capacities of the BCP scaffold. The Cu/Zn co-incorporated BCP scaffold-derived GDF-5 sustained release system produced multifunctional scaffolds with improved angiogenesis and osteogenesis properties.
Collapse
Affiliation(s)
- Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Fei Yang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Qiao Zhao
- Department of Orthopedics, Southwest Medical University Luzhou Sichuan 646000 China
| | - Shixiao Chen
- Radiology Department, Nanchong Central Hospital Nanchong Sichuan 637000 China
| | - Feng Shi
- China Collaboration Innovation Center for Tissue Repair Material Engineering Technology, China West Normal University Nanchong Sichuan 637000 China
| | - Xiaocong Xiang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Li Deng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Xiao Sun
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Gang Feng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
- Department of Orthopedics, Southwest Medical University Luzhou Sichuan 646000 China
| |
Collapse
|
32
|
Zhang X, Li H, Lin C, Ning C, Lin K. Synergetic topography and chemistry cues guiding osteogenic differentiation in bone marrow stromal cells through ERK1/2 and p38 MAPK signaling pathway. Biomater Sci 2018; 6:418-430. [PMID: 29340362 DOI: 10.1039/c7bm01044c] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both the topographic surface and chemical composition modification can enhance rapid osteogenic differentiation and bone formation. Till now, the synergetic effects of topography and chemistry cues guiding biological responses have been rarely reported. Herein, the ordered micro-patterned topography and classically essential trace element of strontium (Sr) ion doping were selected to imitate topography and chemistry cues, respectively. The ordered micro-patterned topography on Sr ion-doped bioceramics was successfully duplicated using the nylon sieve as the template. Biological response results revealed that the micro-patterned topography design or Sr doping could promote cell attachment, ALP activity, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Most importantly, the samples both with micro-patterned topography and Sr doping showed the highest promotion effects, and could synergistically activate the ERK1/2 and p38 MAPK signaling pathways. The results suggested that the grafts with both specific topography and chemistry cues have synergetic effects on osteogenic activity of BMSCs and provide an effective approach to design functional bone grafts and cell culture substrates.
Collapse
Affiliation(s)
- Xinran Zhang
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| | | | | | | | | |
Collapse
|
33
|
Xu A, Zhuang C, Xu S, He F, Xie L, Yang X, Gou Z. Optimized Bone Regeneration in Calvarial Bone Defect Based on Biodegradation-Tailoring Dual-shell Biphasic Bioactive Ceramic Microspheres. Sci Rep 2018; 8:3385. [PMID: 29467439 PMCID: PMC5821854 DOI: 10.1038/s41598-018-21778-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/08/2018] [Indexed: 01/21/2023] Open
Abstract
Bioceramic particulates capable of filling bone defects have gained considerable interest over the last decade. Herein, dual-shell bioceramic microspheres (CaP@CaSi@CaP, CaSi@CaP@CaSi) with adjustable beta-tricalcium phosphate (CaP) and beta-calcium silicate (CaSi) distribution were fabricated using a co-concentric capillary system enabling bone repair via a tailorable biodegradation process. The in vitro results showed the optimal concentration (1/16 of 200 mg/ml) of extracts of dual-shell microspheres could promote bone marrow mesenchymal cell (BMSC) proliferation and enhance the level of ALP activity and Alizarin Red staining. The in vivo bone repair and microsphere biodegradation in calvarial bone defects were compared using micro-computed tomography and histological evaluations. The results indicated the pure CaP microspheres were minimally resorbed at 18 weeks post-operatively and new bone tissue was limited; however, the dual-shell microspheres were appreciably biodegraded with time in accordance with the priority from CaSi to CaP in specific layers. The CaSi@CaP@CaSi group showed a significantly higher ability to promote bone regeneration than the CaP@CaSi@CaP group. This study indicates that the biphasic microspheres with adjustable composition distribution are promising for tailoring material degradation and bone regeneration rate, and such versatile design strategy is thought to fabricate various advanced biomaterials with tailorable biological performances for bone reconstruction.
Collapse
Affiliation(s)
- Antian Xu
- The Affiliated Stomatology Hospital, School of Medicine of Zhejiang University, Hangzhou, 310006, China
| | - Chen Zhuang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shuxin Xu
- The Affiliated Stomatology Hospital, School of Medicine of Zhejiang University, Hangzhou, 310006, China
| | - Fuming He
- The Affiliated Stomatology Hospital, School of Medicine of Zhejiang University, Hangzhou, 310006, China.
| | - Lijun Xie
- Department of Orthopaedic Surgery, the Second Affiliated hospital, School of Medicine of Zhejiang University, Hangzhou, 310009, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Chen Y, Kawazoe N, Chen G. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Acta Biomater 2018; 67:341-353. [PMID: 29242161 DOI: 10.1016/j.actbio.2017.12.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022]
Abstract
Although bone is regenerative, its regeneration capacity is limited. For bone defects beyond a critical size, further intervention is required. As an attractive strategy, bone tissue engineering (bone TE) has been widely investigated to repair bone defects. However, the rapid and effective bone regeneration of large non-healing defects is still a great challenge. Multifunctional scaffolds having osteoinductivity and osteoconductivity are desirable to fasten functional bone tissue regeneration. In the present study, biomimetic composite scaffolds of collagen and biphasic calcium phosphate nanoparticles (BCP NPs) with a controlled release of dexamethasone (DEX) and the controlled pore structures were prepared for bone TE. DEX was introduced in the BCP NPs during preparation of the BCP NPs and hybridized with collagen scaffolds, which pore structures were controlled by using pre-prepared ice particulates as a porogen material. The composite scaffolds had well controlled and interconnected pore structures, high mechanical strength and a sustained release of DEX. The composite scaffolds showed good biocompatibility and promoted osteogenic differentiation of hMSCs when used for three-dimensional culture of human bone marrow-derived mesenchymal stem cells. Subcutaneous implantation of the composite scaffolds at the dorsa of athymic nude mice demonstrated that they facilitated the ectopic bone tissue regeneration. The results indicated the DEX-loaded BCP NPs/collagen composite scaffolds had high potential for bone TE. STATEMENT OF SIGNIFICANCE Scaffolds play a crucial role for regeneration of large bone defects. Biomimetic scaffolds having the same composition of natural bone and a controlled release of osteoinductive factors are desirable for promotion of bone regeneration. In this study, composite scaffolds of collagen and biphasic CaP nanoparticles (BCP NPs) with a controlled release nature of dexamethasone (DEX) were prepared and their porous structures were controlled by using ice particulates. In vitro cell culture and in vivo implantation experiments demonstrated the composite scaffolds exerted synergistic effects on the osteogenic differentiation of hMSCs and bone regeneration. The composite scaffolds also showed promotive effect on the formation of capillary blood vessels in the regenerated bone. This study is the first research to prepare DEX-loaded BCP NPs/collagen porous composite scaffolds. The superior performance of the composite scaffolds indicates the composite scaffolds should be useful for bone tissue engineering.
Collapse
Affiliation(s)
- Ying Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
35
|
Ruan C, Hu N, Ma Y, Li Y, Liu J, Zhang X, Pan H. The interfacial pH of acidic degradable polymeric biomaterials and its effects on osteoblast behavior. Sci Rep 2017; 7:6794. [PMID: 28754984 PMCID: PMC5533751 DOI: 10.1038/s41598-017-06354-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/12/2017] [Indexed: 12/27/2022] Open
Abstract
A weak alkaline environment is established to facilitate the growth of osteoblasts. Unfortunately, this is inconsistent with the application of biodegradable polymer in bone regeneration, as the degradation products are usually acidic. In this study, the variation of the interfacial pH of poly (D, L-lactide) and piperazine-based polyurethane ureas (P-PUUs), as the representations of acidic degradable materials, and the behavior of osteoblasts on these substrates with tunable interfacial pH were investigated in vitro. These results revealed that the release of degraded products caused a rapid decrease in the interfacial pH, and this could be relieved by the introduction of alkaline segments. On the contrary, when culturing with osteoblasts, the variation of the interfacial pH revealed an upward tendency, indicating that cell could construct the microenvironment by secreting cellular metabolites to satisfy its own survival. In addition, the behavior of osteoblasts on substrates exhibited that P-PUUs with the most PP units were better for cell growth and osteogenic differentiation of cells. This is due to the hydrophilic surface and the moderate N% in P-PUUs, key factors in the promotion of the early stages of cellular responses, and the interfacial pH contributing to the enhanced effect on osteogenic differentiation.
Collapse
Affiliation(s)
- Changshun Ruan
- Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Nan Hu
- Key Renal Laboratory of Shenzhen, Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Yufei Ma
- Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yuxiao Li
- Department of Biochemistry and Molecular Biology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Juan Liu
- Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xinzhou Zhang
- Key Renal Laboratory of Shenzhen, Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China.
| | - Haobo Pan
- Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
36
|
Shi F, Liu Y, Zhi W, Xiao D, Li H, Duan K, Qu S, Weng J. The synergistic effect of micro/nano-structured and Cu
2+
-doped hydroxyapatite particles to promote osteoblast viability and antibacterial activity. Biomed Mater 2017; 12:035006. [DOI: 10.1088/1748-605x/aa6c8d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Xu S, Liu J, Zhang L, Yang F, Tang P, Wu D. Effects of HAp and TCP in constructing tissue engineering scaffolds for bone repair. J Mater Chem B 2017; 5:6110-6118. [DOI: 10.1039/c7tb00790f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TCP possesses superior long-term effects in structuring tissue engineering scaffold for bone repair compared to HAp, though TCP lags behind HAp in the early repair period.
Collapse
Affiliation(s)
- Sijia Xu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jianheng Liu
- Department of Orthopaedics
- Chinese PLA General Hospital
- Beijing 100853
- China
| | - Licheng Zhang
- Department of Orthopaedics
- Chinese PLA General Hospital
- Beijing 100853
- China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Peifu Tang
- Department of Orthopaedics
- Chinese PLA General Hospital
- Beijing 100853
- China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
38
|
Shuai C, Sun H, Wu P, Gao C, Yang Y, Guo W, Yang D, Xu F, Feng P, Peng S. Biosilicate scaffolds for bone regeneration: influence of introducing SrO. RSC Adv 2017. [DOI: 10.1039/c7ra01606a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Strontium (Sr), a bioactive element in natural bone, plays a crucial role in stimulating bone remodeling and inhibiting bone resorption.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing
- Central South University
- Changsha
- China
- State Key Laboratory for Powder Metallurgy
| | - Hang Sun
- State Key Laboratory of High Performance Complex Manufacturing
- Central South University
- Changsha
- China
| | - Ping Wu
- College of Chemistry
- Xiangtan University
- Xiangtan
- China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing
- Central South University
- Changsha
- China
| | - Youwen Yang
- State Key Laboratory of High Performance Complex Manufacturing
- Central South University
- Changsha
- China
- State Key Laboratory of Solidification Processing
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing
- Central South University
- Changsha
- China
| | - Dafeng Yang
- Hunan Farsoon High-Technology Co. Ltd
- Changsha
- China
| | - Feng Xu
- Hunan Farsoon High-Technology Co. Ltd
- Changsha
- China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing
- Central South University
- Changsha
- China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health
- Xiangya Hospital
- Central South University
- Changsha
- China
| |
Collapse
|
39
|
Chowdhury MA. The Silica-based Formulations for Drug Delivery, Bone Treatment, and Bone Regeneration. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201500026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Ge F, Yu M, Lin J, Yu C, Weng W, Cheng K, Wang H. Mesenchymal stem cells in response to exposed rod-heights of TiO2 nanorod films. RSC Adv 2016. [DOI: 10.1039/c6ra13081j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cellular responses are strongly sensitive to surface structure, so the optimization of the structures is essential in biomaterial research.
Collapse
Affiliation(s)
- Fei Ge
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Mengfei Yu
- The First Affiliated Hospital of Medical College
- Zhejiang University
- Hangzhou 310003
- China
| | - Jun Lin
- The First Affiliated Hospital of Medical College
- Zhejiang University
- Hangzhou 310003
- China
| | - Cuixia Yu
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Wenjian Weng
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Kui Cheng
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Huiming Wang
- The First Affiliated Hospital of Medical College
- Zhejiang University
- Hangzhou 310003
- China
| |
Collapse
|
41
|
Wu Z, Zheng K, Zhang J, Tang T, Guo H, Boccaccini AR, Wei J. Effects of magnesium silicate on the mechanical properties, biocompatibility, bioactivity, degradability, and osteogenesis of poly(butylene succinate)-based composite scaffolds for bone repair. J Mater Chem B 2016; 4:7974-7988. [DOI: 10.1039/c6tb02429g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The m-MS/PBSu scaffolds, with a hierarchical porous structure, could promote cell proliferation in vitro and bone regeneration in vivo.
Collapse
Affiliation(s)
- Zhaoying Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Kai Zheng
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Jue Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiaotong University
- School of Medicine
| | - Han Guo
- Shanghai Synchrotron Radiation Facility
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- P. R. China
| | - Aldo. R. Boccaccini
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|