1
|
Cao Y, Wang H, Cao S, Liu Z, Zhang Y. Preparation and Characterization of Nanofiber Coatings on Bone Implants for Localized Antimicrobial Activity Based on Sustained Ion Release and Shape-Preserving Design. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2584. [PMID: 38893848 PMCID: PMC11173675 DOI: 10.3390/ma17112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Titanium (Ti), as a hard tissue implant, is facing a big challenge for rapid and stable osseointegration owing to its intrinsic bio-inertness. Meanwile, surface-related infection is also a serious threat. In this study, large-scale quasi-vertically aligned sodium titanate nanowire (SNW) arrayed coatings incorporated with bioactive Cu2+ ions were fabricated through a compound process involving acid etching, hydrothermal treatment (HT), and ion exchange (IE). A novel coating based on sustained ion release and a shape-preserving design is successfully obtained. Cu2+ substituted Na+ in sodium titanate lattice to generate Cu-doped SNW (CNW), which maintains the micro-structure and phase components of the original SNW, and can be efficiently released from the structure by immersing them in physiological saline (PS) solutions, ensuring superior long-term structural stability. The synergistic effects of the acid etching, bidirectional cogrowth, and solution-strengthening mechanisms endow the coating with higher bonding strengths. In vitro antibacterial tests demonstrated that the CNW coatings exhibited effective good antibacterial properties against both Gram-positive and Gram-negative bacteria based on the continuous slow release of copper ions. This is an exciting attempt to achieve topographic, hydrophilic, and antibacterial activation of metal implants, demonstrating a paradigm for the activation of coatings without dissolution and providing new insights into insoluble ceramic-coated implants with high bonding strengths.
Collapse
Affiliation(s)
- Yubao Cao
- School of Machinery and Automation, Weifang University, Weifang 261061, China
| | - Hong Wang
- School of Machinery and Automation, Weifang University, Weifang 261061, China
| | - Shuyun Cao
- School of Machinery and Automation, Weifang University, Weifang 261061, China
| | - Zaihao Liu
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanni Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
2
|
Zhao T, Chu Z, Ma J, Ouyang L. Immunomodulation Effect of Biomaterials on Bone Formation. J Funct Biomater 2022; 13:jfb13030103. [PMID: 35893471 PMCID: PMC9394331 DOI: 10.3390/jfb13030103] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Traditional bone replacement materials have been developed with the goal of directing the osteogenesis of osteoblastic cell lines toward differentiation and therefore achieving biomaterial-mediated osteogenesis, but the osteogenic effect has been disappointing. With advances in bone biology, it has been revealed that the local immune microenvironment has an important role in regulating the bone formation process. According to the bone immunology hypothesis, the immune system and the skeletal system are inextricably linked, with many cytokines and regulatory factors in common, and immune cells play an essential role in bone-related physiopathological processes. This review combines advances in bone immunology with biomaterial immunomodulatory properties to provide an overview of biomaterials-mediated immune responses to regulate bone regeneration, as well as methods to assess the bone immunomodulatory properties of bone biomaterials and how these strategies can be used for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Tong Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (T.Z.); (Z.C.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Zhuangzhuang Chu
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (T.Z.); (Z.C.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Jun Ma
- Department of General Practitioners, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Correspondence: (L.O.); (J.M.); Tel.: +86-21-52039999 (L.O.); +86-21-52039999 (J.M.)
| | - Liping Ouyang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (T.Z.); (Z.C.)
- Correspondence: (L.O.); (J.M.); Tel.: +86-21-52039999 (L.O.); +86-21-52039999 (J.M.)
| |
Collapse
|
3
|
Geng Z, Sang S, Wang S, Meng F, Li Z, Zhu S, Cui Z, Jing Y, Wang C, Su J. Optimizing the strontium content to achieve an ideal osseointegration through balancing apatite-forming ability and osteogenic activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112647. [DOI: 10.1016/j.msec.2022.112647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
|
4
|
Shen X, Fang K, Ru Yie KH, Zhou Z, Shen Y, Wu S, Zhu Y, Deng Z, Ma P, Ma J, Liu J. High proportion strontium-doped micro-arc oxidation coatings enhance early osseointegration of titanium in osteoporosis by anti-oxidative stress pathway. Bioact Mater 2021; 10:405-419. [PMID: 34901556 PMCID: PMC8636681 DOI: 10.1016/j.bioactmat.2021.08.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
The excessive accumulation of reactive oxygen species (ROS) under osteoporosis precipitates a microenvironment with high levels of oxidative stress (OS). This could significantly interfere with the bioactivity of conventional titanium implants, impeding their early osseointegration with bone. We have prepared a series of strontium (Sr)-doped titanium implants via micro-arc oxidation (MAO) to verify their efficacy and differences in osteoinduction capabilities under normal and osteoporotic (high OS levels) conditions. Apart from the chemical composition, all groups exhibited similar physicochemical properties (morphology, roughness, crystal structure, and wettability). Among the groups, the low Sr group (Sr25%) was more conducive to osteogenesis under normal conditions. In contrast, by increasing the catalase (CAT)/superoxide dismutase (SOD) activity and decreasing ROS levels, the high Sr-doped samples (Sr75% and Sr100%) were superior to Sr25% in inducing osteogenic differentiation of MC3T3-E1 cells and the M2 phenotype polarization of RAW264.7 cells, thus enhancing early osseointegration. Furthermore, the results of both in vitro cell co-culture and in vivo studies also showed that the high Sr-doped samples (especially Sr100%) had positive effects on osteoimmunomodulation under the OS microenvironment. Ultimately, the collated findings indicated that the high proportion Sr-doped MAO coatings were more favorable for osteoporosis patients in implant restorations. First study on osteogenic difference of Sr-doped implants in normal and OS conditions. Low Sr-doped MAO coating displays optimal bioactivity in normal microenvironment. High Sr coating significantly enhances osteoimmunomodulation/osteoinduction under OS. High Sr sample resists OS damage by activating CAT/SOD and scavenging excess ROS. High Sr implant restorations are more favorable for osteoporosis patients.
Collapse
Affiliation(s)
- Xinkun Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kai Fang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kendrick Hii Ru Yie
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zixin Zhou
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yiding Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuyi Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yue Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Pingping Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianfeng Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
5
|
Chen W, Xie G, Lu Y, Wang J, Feng B, Wang Q, Xu K, Bao J. An improved osseointegration of metal implants by pitavastatin loaded multilayer films with osteogenic and angiogenic properties. Biomaterials 2021; 280:121260. [PMID: 34823885 DOI: 10.1016/j.biomaterials.2021.121260] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
An increasing number of works have highlighted the importance of metal implants surface modification in enhancing bone defect healing through the synergistic osteogenesis-angiogenesis regulation. Studies have shown that pitavastatin has the effect of promoting osteogenesis and angiogenesis. However, how to prepare pitavastatin functionalized implants and how pitavastatin regulates the synergies of osteogenesis and angiogenesis around implants as well as the related mechanisms remain unclear. In the present study, multilayer films with osteogenic and angiogenic properties were constructed on pure titanium substrates via the layer-by-layer assembly of pitavastatin-loaded β-cyclodextrin grafted chitosan and gelatin. In vitro experiments demonstrated that locally applied pitavastatin could dramatically enhance osteogenic potential of mesenchymal stem cells (MSCs) and angiogenic potential of endothelial cells (ECs). Moreover, pitavastatin loaded multilayer films could regulate the paracrine signaling mediated crosstalk between MSCs and ECs, and indirectly increase the angiogenic potential of MSCs and osteogenic potential of ECs via multiple paracrine signaling. The results of subcutaneous and femur implantation confirmed that locally released pitavastatin had potentially triggered a chain of biological events: mobilizing endogenous stem cells and ECs to the implant-bone interface, in turn facilitating coupled osteogenesis and angiogenesis, and eventually enhancing peri-implant osseointegration. This study enlarges the application scope of pitavastatin and provides an optional choice for developing a multifunctional bioactive coating on the surfaces of mental implants.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China.
| | - Guoliang Xie
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Yang Lu
- Department of Orthopedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China
| | - Jiayuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Baihuan Feng
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Qi Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Kui Xu
- Institute of Biomedical Engineering, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, PR China; The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, PR China.
| | - Jiaqi Bao
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| |
Collapse
|
6
|
Li K, Tian H, Guo A, Jin L, Chen W, Tao B. Gallium (Ga)-strontium (Sr) layered double hydroxide composite coating on titanium substrates for enhanced osteogenic and antibacterial abilities. J Biomed Mater Res A 2021; 110:273-286. [PMID: 34323363 DOI: 10.1002/jbm.a.37284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 01/25/2023]
Abstract
Bacterial infection and poor osteogenic capacity can result in the loosing or failure of titanium (Ti)-based implants in the clinic. Therefore, it is urgent to design an effective approach to enhance the osteogenic property and restrict bacterial activity. In this study, a layered double hydroxide (LDH) composed of Ga and Sr ions on Ti substrates by a hydrothermal method, then calcined in 250°C and denoted as LDH250. The scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were confirmed that the LDH films were successfully formed on the Ti substrates. Importantly, the obtained LDH films can induce an alkaline microenvironment around the Ti surface and regulate the behaviors of osteogenic cells and bacteria. In vitro cellular experiments, the LDH250 can enhance the differentiation of both MC3T3-E1 cells and osteoblasts, stimulate alkaline phosphatase activity (ALP), collagen secretion, and mineralization levels. Meanwhile, antimicrobial assay against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) demonstrated that the LDH250 samples had strong antibacterial abilities, which attributed to the release profile of Ga3+ could act as a "Trojan horse" to destroy the bacterial iron metabolism, inducing of local alkaline environment, and producing reactive oxygen species. Hence, this study provides an effective method for reducing antibacterial infection and enhancing the bone integrative capacity of Ti-based implants for orthopedic applications.
Collapse
Affiliation(s)
- Kai Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongchuan Tian
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liguo Jin
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Weizhen Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Xu N, Fu J, Zhao L, Chu PK, Huo K. Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Adv Healthc Mater 2020; 9:e2000681. [PMID: 32875743 DOI: 10.1002/adhm.202000681] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Bone fracture is prevalent among athletes and senior citizens and may require surgical insertion of bone implants. Titanium (Ti) and its alloys are widely used in orthopedics due to its high corrosion resistance, good biocompatibility, and modulus compatible with natural bone tissues. However, bone repair and regrowth are impeded by the insufficient intrinsic osteogenetic capability of Ti and Ti alloys and potential bacterial infection. The physicochemical properties of the materials and nano/microstructures on the implant surface are crucial for clinical success and loading with biofunctional elements such as Sr, Zn, Cu, Si, and Ag into nano/microstructured TiO2 coating has been demonstrated to enhance bone repair/regeneration and bacterial resistance of Ti implants. In this review, recent advances in biofunctional element-incorporated nano/microstructured coatings on Ti and Ti alloy implants are described and the prospects and limitations are discussed.
Collapse
Affiliation(s)
- Na Xu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Cun X, Hosta-Rigau L. Topography: A Biophysical Approach to Direct the Fate of Mesenchymal Stem Cells in Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2070. [PMID: 33092104 PMCID: PMC7590059 DOI: 10.3390/nano10102070] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Tissue engineering is a promising strategy to treat tissue and organ loss or damage caused by injury or disease. During the past two decades, mesenchymal stem cells (MSCs) have attracted a tremendous amount of interest in tissue engineering due to their multipotency and self-renewal ability. MSCs are also the most multipotent stem cells in the human adult body. However, the application of MSCs in tissue engineering is relatively limited because it is difficult to guide their differentiation toward a specific cell lineage by using traditional biochemical factors. Besides biochemical factors, the differentiation of MSCs also influenced by biophysical cues. To this end, much effort has been devoted to directing the cell lineage decisions of MSCs through adjusting the biophysical properties of biomaterials. The surface topography of the biomaterial-based scaffold can modulate the proliferation and differentiation of MSCs. Presently, the development of micro- and nano-fabrication techniques has made it possible to control the surface topography of the scaffold precisely. In this review, we highlight and discuss how the main topographical features (i.e., roughness, patterns, and porosity) are an efficient approach to control the fate of MSCs and the application of topography in tissue engineering.
Collapse
Affiliation(s)
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
9
|
Ding Y, Yuan Z, Liu P, Cai K, Liu R. Fabrication of strontium-incorporated protein supramolecular nanofilm on titanium substrates for promoting osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110851. [DOI: 10.1016/j.msec.2020.110851] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
|
10
|
Tao B, Chen M, Lin C, Lu L, Yuan Z, Liu J, Liao Q, Xia Z, Peng Z, Cai K. Zn-incorporation with graphene oxide on Ti substrates surface to improve osteogenic activity and inhibit bacterial adhesion. J Biomed Mater Res A 2019; 107:2310-2326. [PMID: 31161676 DOI: 10.1002/jbm.a.36740] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 01/21/2023]
Abstract
The poor osseointegration and postoperative bacterial infection are prominently responsible for the failure of titanium (Ti)-based implant in clinic. To address above issues, methacryloyl modified graphene oxide (GOMA) as zinc ions (Zn2+ ) reservoir and release platform was fabricated on the Ti substrates with cathode electrophoresis deposition (EPD). Afterward, phenylboronic acid (PBA) functionalization methacryloyl-gelatin (GelMA-PBA) was reacting with GOMA through in situ free-radical polymerization to prepare GO-Zn/GelMA-PBA coating. The obtained coating was confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, and Zn ions release property, respectively. in vitro cellular experiments including cell activity, alkaline phosphatase, collagen secretion, extracellular matrix (ECM) mineralization, osteogenic genes and proteins, revealed that GO-Zn/GelMA-PBA coating was beneficial for enhancing the adhesion, proliferation, and differentiation of osteoblasts. The positive results were related to the existence of gelatin, formation of boronic ester between PBA groups, and carbohydrates of osteoblasts surface. Meanwhile, antibacterial assay against Staphylococcus aureus and Pseudomonas aeruginosa confirmed that GO-Zn/GelMA-PBA coating on Ti substrates had superior antibacterial capacity, availably inhibited the bacterial adhesion, and prevented formation of biofilm. Hence, the study provides a promising strategy for designing pro-osteogenesis and antibacterial coating on Ti substrates for orthopedic applications.
Collapse
Affiliation(s)
- Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Maowen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Lu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhang Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Ju Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, China
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhihong Peng
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China.,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Yuan Z, Liu P, Hao Y, Ding Y, Cai K. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response. Colloids Surf B Biointerfaces 2018; 171:597-605. [DOI: 10.1016/j.colsurfb.2018.07.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/03/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
|
12
|
De Giglio E, Bonifacio MA, Ferreira AM, Cometa S, Ti ZY, Stanzione A, Dalgarno K, Gentile P. Multi-compartment scaffold fabricated via 3D-printing as in vitro co-culture osteogenic model. Sci Rep 2018; 8:15130. [PMID: 30310164 PMCID: PMC6181937 DOI: 10.1038/s41598-018-33472-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022] Open
Abstract
The development of in vitro 3D models to get insights into the mechanisms of bone regeneration could accelerate the translation of experimental findings to the clinic, reducing costs and duration of experiments. This work explores the design and manufacturing of multi-compartments structures in poly(ε-caprolactone) (PCL) 3D-printed by Fused Filament Fabrication technique. The construct was designed with interconnected stalls to host stem cells and endothelial cells. Cells were encapsulated within an optimised gellan gum (GG)-based hydrogel matrix, crosslinked using strontium (Sr2+) ions to exploit its bioactivity and finally, assembled within compartments with different sizes. Calcium (Ca2+)-crosslinked gels were also used as control for comparison of Sr2+ osteogenic effect. The results obtained demonstrated that Sr2+ ions were successfully diffused within the hydrogel matrix and increased the hydrogel matrix strength properties under compressive load. The in vitro co-culture of human-TERT mesenchymal stem cells (TERT- hMSCs) and human umbilical vein endothelial cells (HUVECs), encapsulated within Sr2+ ions containing GG-hydrogels and inter-connected by compartmentalised scaffolds under osteogenic conditions, enhanced cell viability and supported osteogenesis, with a significant increase of alkaline phosphatase activity, osteopontin and osteocalcin respect with the Ca2+-crosslinked GG-PCL scaffolds. These outcomes demonstrate that the design and manufacturing of compartmentalised co-culture of TERT-hMSCs and HUVEC populations enables an effective system to study and promote osteogenesis.
Collapse
Affiliation(s)
- Elvira De Giglio
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, Bari, 70126, Italy.
| | - Maria A Bonifacio
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, Bari, 70126, Italy
| | - Ana M Ferreira
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK
| | | | - Zhi Yuan Ti
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK
| | - Antonella Stanzione
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, Bari, 70126, Italy
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
13
|
Chen W, Xu K, Tao B, Dai L, Yu Y, Mu C, Shen X, Hu Y, He Y, Cai K. Multilayered coating of titanium implants promotes coupled osteogenesis and angiogenesis in vitro and in vivo. Acta Biomater 2018; 74:489-504. [PMID: 29702291 DOI: 10.1016/j.actbio.2018.04.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/27/2018] [Accepted: 04/22/2018] [Indexed: 12/20/2022]
Abstract
We used surface-modified titanium (Ti) substrates with a multilayered structure composed of chitosan-catechol (Chi-C), gelatin (Gel) and hydroxyapatite (HA) nanofibers, which were previously shown to improve osteogenesis, as a platform to investigate the interaction of osteogenesis and angiogenesis during bone healing. Combined techniques of Transwell co-culture, wound healing assay, enzyme linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and immunohistochemical staining were used to evaluate adhesion, morphology and migration of adipose-derived mesenchymal stem cells (Ad-MSCs) and human umbilical vein endothelial cells (HUVECs) grown on different Ti substrates. We investigated the effect of substrates on the osteogenic differentiation of Ad-MSCs and reciprocal paracrine effects of Ad-MSCs on HUVECs or vice versa. The multilayered Ti substrates directly regulated the cellular functions of Ad-MSCs and angiogenic HUVECs and mediated communication between them by enhancing paracrine effects via cell-matrix interactions in vitro. The in vivo results showed that the change of microenvironment induced by surface-modified Ti implants promoted the adhesion, recruitment and proliferation of MSCs and facilitated coupled osteogenesis and angiogenesis in bone healing. The study proved that multilayer-film-coated Ti substrates positively mediated cellular biological function in vitro and improved bone healing in vivo. STATEMENT OF SIGNIFICANCE Recent studies have revealed that osteogenesis and angiogenesis are coupled, and that communication between osteoblasts and endothelial cells is essential for bone healing and remodeling processes; however, these conclusions only result from in vitro studies or in vivo studies using transgenic murine models. Relatively little is known about the communication between osteoblasts and endothelial cells in peri-implants during bone healing processes. Our results revealed the cellular/molecular mechanism of how multilayered Ti substrates mediate reciprocal paracrine effects between adipose-derived mesenchymal stem cells and human umbilical vein endothelial cells; moreover, the interactions between the cell-matrix and peri-implant was proven in vivo with enhanced bone healing. This study contributes to our understanding of the fundamental mechanisms of angiogenesis and osteogenesis that affect peri-implantation, and thus, provides new insights into the design of future high-quality orthopedic implants.
Collapse
|
14
|
Ran Q, Yang W, Hu Y, Shen X, Yu Y, Xiang Y, Cai K. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J Mech Behav Biomed Mater 2018; 84:1-11. [PMID: 29709846 DOI: 10.1016/j.jmbbm.2018.04.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 01/02/2023]
Abstract
Selective laser melting (SLM) is one of the three-dimensional (3D) printing techniques that manufacturing versatile porous scaffolds with precise architectures for potential orthopedic application. To understand how the pore sizes of porous Ti6Al4V scaffolds affect their biological performances, we designed and fabricated porous Ti6Al4V implants with straightforward pore dimensions (500, 700, and 900 µm) via SLM, termed as p500, p700, and p900 respectively. The morphological characteristics of Ti6Al4V scaffolds were assessed showing that the actual pore sizes of these scaffolds were 401 ± 26 µm, 607 ± 24 µm, 801 ± 33 µm, respectively. The mechanical properties of Ti6Al4V scaffolds were also evaluated showing that they were comparable to that of bone tissues. Meanwhile, the effect of pore size on biological responses was systematically investigated in vitro and in vivo. It was verified that 3D printing technique was able to fabricate porous Ti6Al4V implants with proper mechanical properties analogous to human bone. The in vitro results revealed that scaffolds with appropriate pore dimension were conducive to cell adhesion, proliferation and early differentiation. Furthermore, the porous Ti6Al4V scaffolds were implanted into the rabbit femur to investigate bone regeneration performance, the in vivo experiment showed the p700 sample was in favor of bone ingrowth into implant pores and bone-implant fixation stability. Taken together, the biological performance of p700 group with actual pore size of about 600 µm was superior to other two groups. The obtained findings provide basis to individually design and fabricate suitable porous Ti6Al4V with specific geometries for orthopedic application.
Collapse
Affiliation(s)
- Qichun Ran
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xinkun Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yonglin Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yang Xiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
15
|
Wang D, Song J, Ma H. An in vitro Experimental Insight into the Osteoblast Responses to Vitamin D3 and Its Metabolites. Pharmacology 2018; 101:225-235. [PMID: 29393236 DOI: 10.1159/000486446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND 25-hydroxyvitamin D3 (25[OH]VD3) has recently been found to be an active hormone. Its biological actions are also demonstrated in various cell types. However, the precise influences of vitamin D3 (VD3) and its metabolites (25[OH]VD3, 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2VD3]) on the osteoblast differentiation remain largely unknown. In this work, we investigated the effects of VD3 and its metabolites in different concentrations on the early and later osteoblast differentiation and biomineralization. METHODS We first used quantitative real-time polymerase chain reaction (RT-qPCR) to evaluate the responsiveness of osteoblasts to VD3, 25(OH)VD3 or 1α,25-(OH)2VD3. We also evaluated the proliferation, differentiation and biomineralization of osteoblast at different time points via cell counting kit-8 assay and the analysis of osteogenic markers. RESULTS The experimental results confirmed that osteoblasts could be responsive to 25(OH)VD3 and 1α,25-(OH)2VD3 but could not directly metabolize VD3 and 25(OH)VD3. Only 200 nmol/L VD3 significantly promoted osteoblast proliferation, while 25(OH)VD3 and 1α,25-(OH)2VD3 did not show obvious actions. Moreover, the early osteogenic markers were increased by 25(OH)VD3 and 1α,25-(OH)2VD3 in a dose-dependent manner. More importantly, only 25(OH)VD3 had accelerated the gene and protein expressions of osteocalcin and the biomineralization level of osteoblasts. CONCLUSIONS Our findings provide reliable evidence that 25(OH)VD3 at 100-200 nmol/L can induce the early and later osteoblast differentiation and biomineralization for clinical bone tissue engineering.
Collapse
Affiliation(s)
- Dong Wang
- Spine Centre, Department of Orthopedics, 306th Hospital of PLA, Beijing, China
| | - Jiang Song
- Department of Spine Surgery, Tengzhou Central People's Hospital, Tengzhou, China
| | - Huasong Ma
- Spine Centre, Department of Orthopedics, 306th Hospital of PLA, Beijing, China
| |
Collapse
|
16
|
Zhou C, Xu AT, Wang DD, Lin GF, Liu T, He FM. The effects of Sr-incorporated micro/nano rough titanium surface on rBMSC migration and osteogenic differentiation for rapid osteointegration. Biomater Sci 2018; 6:1946-1961. [DOI: 10.1039/c8bm00473k] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MNT-Sr can promote rBMSC osteogenic differentiation and significantly enhance rBMSC migration and homing via activation of SDF-1α/CXCR4 signaling.
Collapse
Affiliation(s)
- Chuan Zhou
- Department of Oral Implantology and Prothodontics
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - An-tian Xu
- Department of Oral Implantology and Prothodontics
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Dan-dan Wang
- Department of Oral Implantology and Prothodontics
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Guo-fen Lin
- Department of General Dentistry
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Tie Liu
- Department of Oral Implantology
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Fu-ming He
- Department of Oral Implantology and Prothodontics
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| |
Collapse
|
17
|
Yuan Z, Liu P, Liang Y, Tao B, He Y, Hao Y, Yang W, Hu Y, Cai K. Investigation of osteogenic responses of Fe-incorporated micro/nano-hierarchical structures on titanium surfaces. J Mater Chem B 2018; 6:1359-1372. [DOI: 10.1039/c7tb03071a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fe incorporated micro/nano topographical titanium substrates are fabricated to synergistically regulate osteogenic responses in vitro and osseointegration in vivo.
Collapse
Affiliation(s)
- Zhang Yuan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Yanan Liang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Yansha Hao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology of Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
- China
| |
Collapse
|
18
|
Göttlicher M, Rohnke M, Moryson Y, Thomas J, Sann J, Lode A, Schumacher M, Schmidt R, Pilz S, Gebert A, Gemming T, Janek J. Functionalization of Ti-40Nb implant material with strontium by reactive sputtering. Biomater Res 2017; 21:18. [PMID: 29046823 PMCID: PMC5634847 DOI: 10.1186/s40824-017-0104-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/28/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Surface functionalization of orthopedic implants with pharmaceutically active agents is a modern approach to enhance osseointegration in systemically altered bone. A local release of strontium, a verified bone building therapeutic agent, at the fracture site would diminish side effects, which could occur otherwise by oral administration. Strontium surface functionalization of specially designed titanium-niobium (Ti-40Nb) implant alloy would provide an advanced implant system that is mechanically adapted to altered bone with the ability to stimulate bone formation. METHODS Strontium-containing coatings were prepared by reactive sputtering of strontium chloride (SrCl2) in a self-constructed capacitively coupled radio frequency (RF) plasma reactor. Film morphology, structure and composition were investigated by scanning electron microscopy (SEM), time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HR-TEM) was used for the investigation of thickness and growth direction of the product layer. TEM lamellae were prepared using the focused ion beam (FIB) technique. Bioactivity of the surface coatings was tested by cultivation of primary human osteoblasts and subsequent analysis of cell morphology, viability, proliferation and differentiation. The results are correlated with the amount of strontium that is released from the coating in biomedical buffer solution, quantified by inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Dense coatings, consisting of SrOxCly, of more than 100 nm thickness and columnar structure, were prepared. TEM images of cross sections clearly show an incoherent but well-structured interface between coating and substrate without any cracks. Sr2+ is released from the SrOxCly coating into physiological solution as proven by ICP-MS analysis. Cell culture studies showed excellent biocompatibility of the functionalized alloy. CONCLUSIONS Ti-40Nb alloy, a potential orthopedic implant material for osteoporosis patients, could be successfully plasma coated with a dense SrOxCly film. The material performed well in in vitro tests. Nevertheless, the Sr2+ release must be optimized in future work to meet the requirements of an effective drug delivery system.
Collapse
Affiliation(s)
- Markus Göttlicher
- Institute of Physical Chemistry and Center of Materials Research, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Marcus Rohnke
- Institute of Physical Chemistry and Center of Materials Research, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Yannik Moryson
- Institute of Physical Chemistry and Center of Materials Research, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Jürgen Thomas
- IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Joachim Sann
- Institute of Physical Chemistry and Center of Materials Research, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Matthias Schumacher
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Romy Schmidt
- IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Stefan Pilz
- IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Annett Gebert
- IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Thomas Gemming
- IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Jürgen Janek
- Institute of Physical Chemistry and Center of Materials Research, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
19
|
Xu K, Chen W, Mu C, Yu Y, Cai K. Strontium folic acid derivative functionalized titanium surfaces for enhanced osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo. J Mater Chem B 2017; 5:6811-6826. [PMID: 32264331 DOI: 10.1039/c7tb01529a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The introduction of the bioactive strontium (Sr) element has become an attractive method in the design of bio-functional layers on titanium surfaces. However, there are still no effective solutions to some of the associated problems including the toxicity of free Sr2+ ions and the rapid and irreversible loss of the strontium element from the bio-functional layers. In this study, we successfully fabricated a bioactive layer on Ti substrates with a strontium folic acid derivative (FASr). About 3.11 at% Sr was incorporated into the Ti surface. The characterization results showed that FASr was stable over a long period of time and minimal free Sr2+ ions were detected in simulated body fluid (SBF). In the in vitro experiment, the FASr could significantly promote the cell adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) over a short period. Furthermore, it could dramatically accelerate the bone formation around the implant. In vivo, a total of 30 7-week old male Sprague Dawley (SD) rats were applied for implantation tests. The results showed that this positive stimulatory effect became more evident in the later stages of the in vivo observation. This study provides an effective strategy for designing and optimizing Ti-based implants.
Collapse
Affiliation(s)
- Kui Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | | | | | | | | |
Collapse
|
20
|
Gong Z, Cheng H, Zhang M, Liu X, Zeng Y, Xiang K, Xu Y, Wang Y, Zhu Z. Osteogenic activity and angiogenesis of a SrTiO3 nano-gridding structure on titanium surface. J Mater Chem B 2017; 5:537-552. [DOI: 10.1039/c6tb02329k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual effect of alveolate double-layered SrTiO3 nano-gridding based on Ti substrate: osteogenic activity and angiogenesis.
Collapse
Affiliation(s)
- Zheni Gong
- Institute of Nano-Science and Nano-Technology
- College of Physical Science and Technology
- Central China Normal University
- Wuhan
- China
| | - Haoyan Cheng
- Institute of Nano-Science and Nano-Technology
- College of Physical Science and Technology
- Central China Normal University
- Wuhan
- China
| | - Meng Zhang
- Institute of Nano-Science and Nano-Technology
- College of Physical Science and Technology
- Central China Normal University
- Wuhan
- China
| | - Xi Liu
- Institute of Nano-Science and Nano-Technology
- College of Physical Science and Technology
- Central China Normal University
- Wuhan
- China
| | - Yan Zeng
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- China
| | - Kaiwen Xiang
- Hospital of Central China Normal University
- Central China Normal University
- Wuhan 430079
- China
| | - Yuan Xu
- Institute of Nano-Science and Nano-Technology
- College of Physical Science and Technology
- Central China Normal University
- Wuhan
- China
| | - Yinwei Wang
- Institute of Nano-Science and Nano-Technology
- College of Physical Science and Technology
- Central China Normal University
- Wuhan
- China
| | - Zhihong Zhu
- Institute of Nano-Science and Nano-Technology
- College of Physical Science and Technology
- Central China Normal University
- Wuhan
- China
| |
Collapse
|