1
|
Yousefi R, Asgari S, Banitalebi Dehkordi A, Mohammadi Ziarani G, Badiei A, Mohajer F, Varma RS, Iravani S. MOF-based composites as photoluminescence sensing platforms for pesticides: Applications and mechanisms. ENVIRONMENTAL RESEARCH 2023; 226:115664. [PMID: 36913998 DOI: 10.1016/j.envres.2023.115664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
2
|
Li Q, Wang Y, Zhu Q, Liu H, Liu J, Meng HM, Li Z. A dual-mode system based on molybdophosphoric heteropoly acid and fluorescent microspheres for the reliable and ultrasensitive detection of alkaline phosphatase. Analyst 2023; 148:1259-1264. [PMID: 36779364 DOI: 10.1039/d2an02052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel colorimetric and fluorescent dual-mode sensing system based on molybdophosphoric heteropoly acid (PMA) and fluorescent microspheres (FMs) was established for monitoring the activity of alkaline phosphatase (ALP). In the presence of ALP, L-ascorbic acid-2-phosphate (AAP) could be hydrolyzed catalytically to ascorbic acid (AA), which could reduce PMA to phosphorus molybdenum blue (PMB), accompanied by the generation of colorimetric signals depending on the level of ALP. Meanwhile, the fluorescence of FMs was quenched markedly by the PMB produced due to the inner-filter effect, which constituted the response mechanism for the dual-mode sensing systems of ALP. On this basis, a PMA-FMs based dual-mode sensing system was used for the detection of ALP, which not only possessed remarkable sensitivity, with a limit of detection of 0.27 U L-1 and 0.11 U L-1, but also exhibited good analytical performance in biological samples with satisfactory results. Moreover, a simple and portable test kit for the visual detection of ALP in real serum samples was fabricated utilizing a smartphone with image-recognition and data-processing capabilities as a visual-detection platform.
Collapse
Affiliation(s)
- Qiannan Li
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| | - Yufei Wang
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| | - Qianqian Zhu
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| | - Haifang Liu
- Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China
| | - Jianbo Liu
- Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China
| | - Hong-Min Meng
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhaohui Li
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Wang Z, Guo Y, Xianyu Y. Applications of self-assembly strategies in immunoassays: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Two novel Anderson-type polyoxometalate based MnIII complexes constructed from pyrene derivatives: synthesis, photophysical, and electrochemical properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Barchiesi E, Wareing T, Desmond L, Phan AN, Gentile P, Pontrelli G. Characterization of the Shells in Layer-By-Layer Nanofunctionalized Particles: A Computational Study. Front Bioeng Biotechnol 2022; 10:888944. [PMID: 35845400 PMCID: PMC9280187 DOI: 10.3389/fbioe.2022.888944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Drug delivery carriers are considered an encouraging approach for the localized treatment of disease with minimum effect on the surrounding tissue. Particularly, layer-by-layer releasing particles have gained increasing interest for their ability to develop multifunctional systems able to control the release of one or more therapeutical drugs and biomolecules. Although experimental methods can offer the opportunity to establish cause and effect relationships, the data collection can be excessively expensive or/and time-consuming. For a better understanding of the impact of different design conditions on the drug-kinetics and release profile, properly designed mathematical models can be greatly beneficial. In this work, we develop a continuum-scale mathematical model to evaluate the transport and release of a drug from a microparticle based on an inner core covered by a polymeric shell. The present mathematical model includes the dissolution and diffusion of the drug and accounts for a mechanism that takes into consideration the drug biomolecules entrapped into the polymeric shell. We test a sensitivity analysis to evaluate the influence of changing the model conditions on the total system behavior. To prove the effectiveness of this proposed model, we consider the specific application of antibacterial treatment and calibrate the model against the data of the release profile for an antibiotic drug, metronidazole. The results of the numerical simulation show that ∼85% of the drug is released in 230 h, and its release is characterized by two regimes where the drug dissolves, diffuses, and travels the external shell layer at a shorter time, while the drug is released from the shell to the surrounding medium at a longer time. Within the sensitivity analysis, the outer layer diffusivity is more significant than the value of diffusivity in the core, and the increase of the dissolution parameters causes an initial burst release of the drug. Finally, changing the shape of the particle to an ellipse produces an increased percentage of drugs released with an unchanged release time.
Collapse
Affiliation(s)
- E. Barchiesi
- Instituto de Investigación Cientifica, Universidad de Lima, Lima, Peru
- École Nationale d’Ingénieurs de Brest, Brest, France
| | - T. Wareing
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - L. Desmond
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - A. N. Phan
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - P. Gentile
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
- *Correspondence: P. Gentile, ; G. Pontrelli,
| | - G. Pontrelli
- Istituto per le Applicazioni del Calcolo-CNR, Rome, Italy
- *Correspondence: P. Gentile, ; G. Pontrelli,
| |
Collapse
|
6
|
Accessing decavanadate chemistry with tris(hydroxymethyl)aminomethane, and evaluation of methylene blue bleaching. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Liu J, Sun L, Zhan H, Fan LJ. Preparation of Fluorescence-Encoded Microspheres Based on Hydrophobic Conjugated Polymer-Dye Combination and the Immunoassay. ACS APPLIED BIO MATERIALS 2019; 2:3009-3018. [PMID: 35030793 DOI: 10.1021/acsabm.9b00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fluorescent microspheres are greatly demanded in many applications based on high-throughput suspension array technology. To realize the multiplexed assay, microspheres should be encoded to identify the interaction between analytes and spheres. This study advanced a strategy for preparing fluorescence-encoded microspheres, employing two hydrophobic fluorophores, poly(p-phenyleneethylene) (PPE), and Nile Red (NR), as well as the monodisperse amino-modified porous substrate polymeric spheres, poly(glycidyl methacrylate) microspheres (APGMA). Loading the fluorophores sequentially onto the substrate spheres via adsorption by immersing the spheres in the dipping solution of fluorophores resulted in the APGMA-PPE-NR spheres. By varying the concentration and combination of fluorophores in the solution, an array of 64-code APGMA-PPE-NR spheres was obtained and could be easily individually decoded via flow cytometry. A 2D dot plot from the flow cytometry of a set of mixed spheres with four different codes could also be differentiated, coincident with the overlaid plots of the spheres' corresponding codes but measured individually. These spheres were found to have good stability against washing, photobleaching, and thermal treatment. In addition, a sandwich immunoassay for the detection of goat IgG was performed, and the capability of the encoded spheres to be used in suspension array technology was demonstrated.
Collapse
Affiliation(s)
- Jiangxin Liu
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lijuan Sun
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hao Zhan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Li-Juan Fan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
8
|
Zhang J, Huang Y, Li G, Wei Y. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.10.025] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Salomon W, Dolbecq A, Roch-Marchal C, Paille G, Dessapt R, Mialane P, Serier-Brault H. A Multifunctional Dual-Luminescent Polyoxometalate@Metal-Organic Framework EuW 10@UiO-67 Composite as Chemical Probe and Temperature Sensor. Front Chem 2018; 6:425. [PMID: 30320059 PMCID: PMC6165868 DOI: 10.3389/fchem.2018.00425] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/28/2018] [Indexed: 11/13/2022] Open
Abstract
The luminescent [EuW10O36]9- polyoxometalate has been introduced into the cavities of the highly porous zirconium luminescent metal-organic framework UiO-67 via a direct synthesis approach, affording the EuW10@UiO-67 hybrid. Using a combination of techniques (TGA, BET, elemental analysis, EDX mapping,…) this new material has been fully characterized, evidencing that it contains only 0.25% in europium and that the polyoxometalate units are located inside the octahedral cavities and not at the surface of the UiO-67 crystallites. Despite the low amount of europium, it is shown that EuW10@UiO-67 acts as a solid-state luminescent sensor for the detection of amino-acids, the growth of the emission intensity globally following the growth of the amino-acid pKa. In addition, EuW10@UiO-67 acts as a sensor for the detection of metallic cations, with a high sensitivity for Fe3+. Noticeably, the recyclability of the reported material has been established. Finally, it is shown that the dual-luminescent EuW10@UiO-67 material behave as a self-calibrated-ratiometric thermometer in the physiological range.
Collapse
Affiliation(s)
- William Salomon
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin, Versailles, France
| | - Anne Dolbecq
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin, Versailles, France
| | - Catherine Roch-Marchal
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin, Versailles, France
| | - Grégoire Paille
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin, Versailles, France
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, Paris, France
| | - Rémi Dessapt
- Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, Nantes, France
| | - Pierre Mialane
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin, Versailles, France
| | | |
Collapse
|
10
|
Nachtigall O, Spandl J. Versatile Organic Chemistry on Vanadium-Based Multi-Electron Reservoirs. Chemistry 2018; 24:2785-2789. [DOI: 10.1002/chem.201800041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Olaf Nachtigall
- Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Johann Spandl
- Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| |
Collapse
|
11
|
Zhang C, Luo J, Ou L, Lun Y, Cai S, Hu B, Yu G, Pan C. Fluorescent Porous Carbazole-Decorated Copolymer Monodisperse Microspheres: Facile synthesis, Selective and Recyclable Detection of Iron (III) in Aqueous Medium. Chemistry 2018; 24:3030-3037. [DOI: 10.1002/chem.201705560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Chunyan Zhang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources; Central South University; Changsha 410083 P. R. China
- Department of Materials and Chemical Engineering, Key Laboratory of Functional Materials for Green Building; Hunan Institute of Technology; Hengyang 421002 P. R. China
| | - Jianxin Luo
- Department of Materials and Chemical Engineering, Key Laboratory of Functional Materials for Green Building; Hunan Institute of Technology; Hengyang 421002 P. R. China
| | - Lijuan Ou
- Department of Materials and Chemical Engineering, Key Laboratory of Functional Materials for Green Building; Hunan Institute of Technology; Hengyang 421002 P. R. China
| | - Yinghui Lun
- Department of Materials and Chemical Engineering, Key Laboratory of Functional Materials for Green Building; Hunan Institute of Technology; Hengyang 421002 P. R. China
| | - Songtao Cai
- Department of Materials and Chemical Engineering, Key Laboratory of Functional Materials for Green Building; Hunan Institute of Technology; Hengyang 421002 P. R. China
| | - Bonian Hu
- Department of Materials and Chemical Engineering, Key Laboratory of Functional Materials for Green Building; Hunan Institute of Technology; Hengyang 421002 P. R. China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources; Central South University; Changsha 410083 P. R. China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources; Central South University; Changsha 410083 P. R. China
| |
Collapse
|